• Title/Summary/Keyword: Tunable bandpass filter

Search Result 56, Processing Time 0.022 seconds

Tunable Bandpass Filter with Varactors Based on the CRLH-TL Metamaterial Structure

  • Kim, Beom Kyu;Lee, Bomson
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.4
    • /
    • pp.245-250
    • /
    • 2013
  • This paper presents a tunable bandpass filter based on the varactor-loaded composite right- and left-handed transmission line (CRLH-TL). The proposed filter is composed of one CRLH-TL unit cell, which corresponds to the third-order bandpass filter. The tunable bandpass filter is designed using only lumped-elements. The use of lumped elements saves space and lowers the fabrication cost. The size of the proposed tunable bandpass filter is $17mm{\times}5mm$, neglecting the feed lines and DC lines. All of the varactors are controlled by one DC bias. The center frequency of the bandpass filter can be controlled by varying the value of the varactors. The tunable range of the center frequency is from 412.5 to 670 MHz. The insertion loss is less than 3 dB, the return loss is more than 10 dB in the passband.

A Compact Tunable Bandpass Filter Using Coupled Metamaterial Resonators with Varactor Diode

  • Kim, Gi-Rae
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.5
    • /
    • pp.484-488
    • /
    • 2010
  • In this paper, we present a novel tunable microstrip bandpass filter based on split ring resonators (SRRs). The varactors are reverse-biased semiconductor diode, and are connected between the concentric rings of the SRR. An individual varactor loaded SRR based bandpass tunable filter module is analyzed. Then a second order tunable filter with 7% fractional bandwidth and a tuning range from 2.75 to 2.86 GHz is assembled from basic filter modules. The simulator HFSS (V10) is used to design the tunable filter and to simulate. The results show good characteristics is created.

Design and Implementation of a Frequency Tunable Bandpass Filter for TVWS (TVWS용 주파수가변 대역통과필터의 설계 및 구현)

  • Kang, Sanggee
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.4
    • /
    • pp.44-47
    • /
    • 2016
  • In these days, interest of systems and services using TVWS(TV White Space) are increased, communication systems and services for TVWS have been actively studied. The unoccupied frequency in TVWS is different according to the geographical location and the time of day. RF systems having a frequency tunable bandpass filter operated in TVWS could be efficiently used. In this paper, a frequency tunable bandpass filter operated in 470 ~ 698MHz is designed and implemented. In consideration of simple control and physical size, the tunable bandpass filter is designed with 2-pole. The implemented tunable bandpass filter has the operating frequency band of 470 ~ 698MHz with control voltages of 1.58 ~ 3.93V, the insertion loss of maximum 4.78dB and the return loss of below 10dB. The implemented frequency tunable bandpass filter can be directly used in the RF receiver for TVWS and the design procedures could be used for developing a high power tunable bandpass filter as the basic research data.

Tunable Combline Bandpass Filter Using Cross-Coupled Stepped-Impedance Resonators with Enhanced Characteristics

  • Kim, Yoon-Hong;Cho, Young-Ho;Yun, Sang-Won
    • Journal of electromagnetic engineering and science
    • /
    • v.8 no.4
    • /
    • pp.144-147
    • /
    • 2008
  • This paper proposes a tunable combline bandpass filter with high selectivity, constant bandwidth, and good stopband performances. A filter with these characteristics is obtained by applying cross-coupling to the conventional combline bandpass filter using stepped-impedance resonators(SIRs). For high selectivity and constant bandwidth, cross-coupling is utilized and the SIR configuration is used for enhanced stopband performances. The proposed combline tunable bandpass filter with 5% of fractional bandwidth at 1.6 GHz was fabricated and tested. The measured results showed 11.6% tunability with constant bandwidth, high selectivity and enhanced stopband characteristics.

SIP based Tunable BPF for UHF TV Tuner Applications (UHF대역 TV 튜너에 적용을 위한 가변형 대역통과필터)

  • Lee, Tae-C.;Park, Jae-Y.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.11
    • /
    • pp.2127-2130
    • /
    • 2008
  • In this paper, a tunable bandpass filter with mutual inductive coupling circuits is newly designed and demonstrated for UHF TV tuner ranged from Ch.14(473MHz) to Ch.69(803MHz) applications. Conventional HF tuning circuit with an electromagnetic bandpass filter has several problems such as large size, high volume and high cost, since the electromagnetic filter is comprised of several passive components and air core inductors to be assembled and controlled manually. To address these obstacles, peaking chip inductor was newly applied for constructing the mutual inductive coupling circuit. The proposed circuit was newly and optimally designed, since the chip inductor showed lower components Q-value than the air core inductor. A varactor diode has been also used to fabricate the proposed tunable bandpass filter for RF tuning circuit. The fabricated tunable filter exhibited low insertion loss of approximately -3dB, high return loss of below -10dB, and large tuning bandwidth of 330MHz.

Design of 950~2150MHz tunable bandpass ilter by cascading low and high pass filters (저역 및 고역 통과필터 종속연결형 950~2150MHz 가변대역통과필터의 설계)

  • 신재준;구경헌
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.7
    • /
    • pp.1385-1393
    • /
    • 1997
  • In this paper, a systematic design method of brjoadband tunable bandpass filter is presented by using user defined varactor diode method. The tunable bandpass filter is constructed as the cascade connection of low pass filter and high pass filter. The designed filter shows the characteristeristics of 2.7.+-.0.2dB insertion loss and 37.1.+-.5.0dB insertion loss and 32.1.+-.2.2dB image rejection. The results of the research can be used fodr the broadband tunable filter of DBS tuner and communication instruments.

  • PDF

A Varactor-Tuned RF Tunable Bandpass Filter with Improved Passband Flatness

  • Kim, Byung-Wook;Yun, Du-Il;Yun, Sang-Won
    • Journal of electromagnetic engineering and science
    • /
    • v.2 no.2
    • /
    • pp.124-127
    • /
    • 2002
  • A RF tunable bandpass filter using dielectric resonators and varactor diodes is redesigned to improve the passband flatness. Since the tunable liters are generally of narrow bandwidth and the Q value of the varactor diode is usually very low, the passband flatness is strongly deteriorated by sizeable distortion loss. To remedy this problem, we construct modified Chebyshev type filter by use of network synthesis techniques. The key of modified Chebyshev type filter is the rearrangement of the passband poles to improve the passband flatness. To maintain the constant passband bandwidth, design techniques of input/output stage and coupling windows are also applied. Experimental results show that the passband flatness can be improved by purposed method without any additional RF amplitude equalizer.

Harmonic Suppressed Dual-Band Bandpass Filter with Independently Tunable Center Frequencies and Bandwidths

  • Chaudhary, Girdhari;Jeong, Yongchae;Lim, Jongsik
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.2
    • /
    • pp.93-103
    • /
    • 2013
  • This paper presented a novel approach for the design of a tunable dual-band bandpass filter (BPF) with independently tunable passband center frequencies and bandwidths. The newly proposed dual-band filter principally comprised two dual-mode single band filters using common input/output lines. Each single BPF was realized using a varactor-loaded transmission line resonator. To suppress the harmonics over a broad bandwidth, a defected ground structure was used at the input/output feeding lines. From the experimental results, it was found that the proposed filter exhibited the first passband center frequency tunable range from 1.48 to 1.8 GHz with a 3-dB fractional bandwidth (FBW) variation from 5.76% to 8.55%, while the second passband center's frequency tunable range was 2.40 to 2.88 GHz with a 3-dB FBW variation from 8.28% to 12.42%. The measured results of the proposed filters showed a rejection level of 19 dB up to more than 10 times the highest center frequency of the first passband.

Frequency-Tunable Bandpass Filter Design Using Active Inductor (능동 인덕터를 이용한 주파수 가변형 대역통과 필터 설계)

  • Lee, Seok-Jin;Choi, Seok-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3425-3430
    • /
    • 2013
  • The fast-growing market in wireless communications has led to the development of multi-standard mobile terminals. In this paper, a frequency-tunable active RC bandpass filter for multi-standards wireless communication system is designed using an active inductor. The conventional bandpass filter design methods employ the high order filter or high quality factor Q to improve the stopband attenuation characteristics and frequency selectivity of the passband. The proposed bandpass filter based on the high Q active inductor has an improved frequency characteristics. The center frequency and gain of the designed bandpass filter is tuned by employing the tuning circuit. We have performed the simulation using TSMC $0.18{\mu}m$ process parameter to analyze the characteristics of the designed active RC bandpass filter. The bandpass filter with Q=20.5 has 90MHz half power bandwidth at the center frequency of 1.86GHz. Moreover, the center frequency of the proposed bandpass filter can be tuned between 1.86~2.38GHz for the multi-standards wireless communication system using the capacitor of the tuning circuit.

An Active Tunable Bandpass Filter Design for High Power Application (고출력 특성을 고려한 능동 가변 대역 통과 여파기 설계)

  • Kim, Do-Kwan;Yun, Sang-Won
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.3
    • /
    • pp.262-268
    • /
    • 2010
  • In this paper, a high power active tunable bandpass filter made of dielectric resonators and varactor diodes is designed using the active capacitance circuit generating negative resistance for tuning cellular TX, RX band. An active capacitance circuit's series feedback circuit using GaAs HFET whose $P_{1dB}$ is 32 dBm is used for compensating the losses from the varactor diodes of the tunable bandpass filter. The tuning elements, the varactor diodes are used as the back-to-back configuration to achieve the high power performance, The designed active capacitance circuit improves the insertion loss characteristics. The designed 2-stage active tunable dielectric bandpass filter at cellular band can cover from 800 MHz to 900 MHz. The insertion losses at 836 MHz and 881.5 MHz with 25 MHz bandwidth are 0.48 dB and 0.39 dB, respectively. The $P_{1dB}$ of the designed bandpass filter at TX and RX band are measured as 19.5 dBm and 23 dBm, respectively.