• Title/Summary/Keyword: Tuna byproduct

Search Result 6, Processing Time 0.017 seconds

Preparation of Tuna Skin Byproduct Film Containing Pinus thunbergii Cone Extract

  • Bak, Jing-Gi;Kim, Jin;Ohk, Seung-Ho
    • Biomedical Science Letters
    • /
    • v.26 no.4
    • /
    • pp.360-367
    • /
    • 2020
  • Tuna skin byproduct extract (TSB) was used as a biocompatibility film base material, and its composite film with gellan gum (GG) was prepared. In addition, Pinus thunbergii cone extract (PTCE) was incorporated into the film to provide anti-oxidant and anti-bacteria activities. The tensile strength (TS) of the TSB/GG composite films increased with increasing GG content, whereas elongation at break (E) decreased. TSB/GG film at a ratio of 0.5:0.5 (w/w) showed the most desirable TS and E values. Based on scavenging free radical potentials and disc diffusion method results against growth of bacteria, antioxidant and anti-bacteria activities of films increased with increasing PTCE concentration. Accordingly, this study showed that TSB/GG could be used as a film material while the TSB/GG composite film containing PTCE can be utilized as functional packaging.

Effects of Substituting Fish Meal and Macroalgae for Tuna Byproduct Meal and Rice Bran in Extruded Pellets Fed to Juvenile Abalone Haliotis discus (Reeve 1846) (까막전복(Haliotis discus) 치패용 EP사료내 어분과 해조류 대체원으로서 참치부산물분과 생미강의 효과)

  • Yun, Ahyeong;Kim, June;Jeong, Hae Seung;Lee, Ki Wook;Cho, Sung Hwoan
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.51 no.4
    • /
    • pp.376-382
    • /
    • 2018
  • We investigated the effect of replacing tuna byproduct meal (TBM) and rice bran (RB) with fish meal (FM) and macroalgae (MA) in extruded pellets (EP) supplied as a diet to juvenile Abalone Haliotis duscus in aquaculture. In total, 80,000 juvenile abalone were distributed among eight indoor raceways and supplied with one of four experimental diets. The control diet consisted of FM, fermented soybean meal, corn gluten meal and shrimp meal as protein sources, with wheat flour and dextrin as carbohydrate sources; the control diet also contained MA. In the FM50 diet, TBM was replaced with 50% FM. In the MA 50 diet, RB was replaced with 50% MA. The final diet, FM50+MA50, included TMB and RB in place of 50% FM and 50% MA. Abalone were fed to satiation with little food leftover for 16 weeks. Weight gain and specific growth rate of abalone fed the control diet were greater than those of abalone fed the FM50 and MA50 diets, but not different from those of abalone fed FM50+MA50 diet. The proximate composition of abalone soft body did not vary according to experimental diets. Based on these results, it appears that the traditional commercial diet for juvenile abalone, comprising FM and MA, could be replaced with one containing 50% TBM and 50% RB without any retardation of growth.

Effects on Quality Characteristics of Extruded Meat Analog by Addition of Tuna Sawdust (참치 톱밥의 첨가가 압출성형 인조육의 품질 특성에 미치는 영향)

  • Cho, Sung Young;Ryu, Gi-Hyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.4
    • /
    • pp.465-472
    • /
    • 2017
  • In this study, tuna sawdust was added to extruded meat analog in order to develop a meat analog with high quality. Addition of tuna sawdust has merit for utilizing a byproduct from poultry processing. Physicochemical characteristics were examined through the extrusion cooking process. The basic mixture of sample mixed with 65% deffated soy flour 25% isolated soy protein, and 10% corn starch was setup as the raw material. Three kinds of samples were made in total by addition of 15% and 30% tuna sawdust to this mixture. The extrusion process had a screw speed of 250 rpm, die temperature of $140^{\circ}C$, and moisture content of 50%. As addition of tuna sawdust increased, breaking strength and density decreased, specific length increased, and integrity and water holding capacity decreased. Likewise, nitrogen solubility index and protein digestibility decreased as addition of tuna sawdust increased. DPPH radical scavenging activity increased as addition of tuna sawdust addition, whereas it decreased as storage period increased to 30 or 60 days. The value of rancidity decreased as addition of tuna sawdust increased. However, 60 days later, radical scavenging activity increased more or less, and a significant difference was detected 150 days later. In conclusion, addition of tuna sawdust increased soft texture, and nutrition of the basic mixture sample. The process promoting functionality such as improvement of antioxidant function was confirmed through this study.

Optimization and production of protein hydrolysate containing antioxidant activity from tuna cooking juice concentrate by response surface methodology

  • Kiettiolarn, Mookdaporn;Kitsanayanyong, Lalitphan;Maneerote, Jirawan;Unajak, Sasimanas;Tepwong, Pramvadee
    • Fisheries and Aquatic Sciences
    • /
    • v.25 no.6
    • /
    • pp.335-349
    • /
    • 2022
  • To optimize the hydrolysis conditions in the production of antioxidant hydrolysates from tuna cooking juice concentrate (TC) to maximize the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, TC containing 48.91% protein was hydrolyzed with Alcalase 2.4 L, and response surface methodology (RSM) was applied. The optimum hydrolysis conditions included a 2.2% (w/v) Alcalase concentration and 281 min hydrolysis time, resulting in the highest DPPH radical scavenging activity of 66.49% (0.98 µmol Trolox/mg protein). The analysis of variance for RSM showed that hydrolysis time was an important factor that significantly affected the process (p < 0.05). The effects of different drying methods (freeze drying, hot air drying, and vacuum drying) on the DPPH radical scavenging activity and amino acid (AA) profiles of TC hydrolysate (TCH) were evaluated. Vacuum-dried TCH (VD) exhibited an increase in DPPH radical scavenging activity of 81.28% (1.20 µmol Trolox/mg protein). The VD samples were further fractionated by ultrafiltration. The AA profiles and antioxidant activities in terms of the DPPH radical scavenging activity, 2,2'-azino-bis(3-ethylbenzthiazoline)-6-sulfonic acid (ABTS) radical scavenging activity, ferric reducing antioxidant power, and ferrous ion chelating activity were investigated. Glutamic acid, glycine, arginine, and cysteine were the major AAs found in the TCH fractions. The highest DPPH radical scavenging activity was found in the VD-1 fraction (< 5 kDa). The VD-3 fraction (> 10 kDa) exhibited the highest ABTS radical scavenging activity and ferric reducing antioxidant power. The ferrous ion chelating activity was the highest in VD-1 and VD-2 (5 to 10 kDa). In conclusion, this study provided the optimal conditions to obtain high antioxidant activities through TCH production, and these conditions could provide a basis for the future application of TCH as a functional food ingredient.

Preparation and characterization of protein isolate from Yellowfin tuna Thunnus albacares roe by isoelectric solubilization/precipitation process

  • Lee, Hyun Ji;Lee, Gyoon-Woo;Yoon, In Seong;Park, Sung Hwan;Park, Sun Young;Kim, Jin-Soo;Heu, Min Soo
    • Fisheries and Aquatic Sciences
    • /
    • v.19 no.3
    • /
    • pp.14.1-14.10
    • /
    • 2016
  • Isoelectric solubilization/precipitation (ISP) processing allows selective, pH-induced water solubility of proteins with concurrent separation of lipids and removal of materials not intended for human consumption such as bone, scales, skin, etc. Recovered proteins retain functional properties and nutritional value. Four roe protein isolates (RPIs) from yellowfin tuna roe were prepared under different solubilization and precipitation condition (pH 11/4.5, pH 11/5.5, pH 12/4.5 and pH 12/5.5). RPIs contained 2.3-5.0 % moisture, 79.1-87.8 % protein, 5.6-7. 4 % lipid and 3.0-3.8 % ash. Protein content of RPI-1 and RPI-2 precipitated at pH 4.5 and 5.5 after alkaline solubilization at pH 11, was higher than those of RPI-3 and RPI-4 after alkaline solubilization at pH 12 (P < 0.05). Lipid content (5.6-7.4 %) of RPIs was lower than that of freeze-dried concentrate (10.6 %). And leucine and lysine of RPIs were the most abundant amino acids (8.8-9.4 and 8.5-8.9 g/100 g protein, respectively). S, Na, P, K as minerals were the major elements in RPIs. SDS-PAGE of RPIs showed bands at 100, 45, 25 and 15 K. Moisture and protein contents of process water as a 2'nd byproduct were 98.9-99.0 and 1.3-1.8 %, respectively. Therefore, yellowfin tuna roe isolate could be a promising source of valuable nutrients for human food and animal feeds.

Long-term Usability Evaluation of Low Fish Meal Extruded Pellet Diet for Juvenile Olive Flounder Paralichthys olivaceus at Jeju Fish Farm (제주도 양식장 내 치어기 넙치(Paralichthys olivaceus)의 저어분 EP (Extruded Pellet) 사료 장기간 이용성 평가)

  • Hyunwoon Lim;Jaesik Kim;Daehyun Ko;Jin-Woo Song;Seunghan Lee;Sang-Woo Hur;Kang-Woong Kim;Kyeong-Jun Lee
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.57 no.1
    • /
    • pp.23-31
    • /
    • 2024
  • This study evaluated the utilization of a low fish meal (LFM) diet and black soldier fly (BSF) Hermetia illucens meal and oil as a fish meal (FM) substitute or functional additive for juvenile olive flounder Paralichthys olivaceus at the Jeju fish farm. Two experimental diets replaced FM using animal (tankage, poultry byproduct and tuna byproduct meal) and plant (wheat gluten and soy protein concentrate) protein sources, containing 45% (FM45) and 35% (FM35) of FM, respectively. One experimental diet replaced FM with animal, plant, and BSF meal, fish oil using insect meal and oil (FM35+). After the feeding trial ended, no differences in growth performance, feed utilization, survival and biological indices were observed among all experimental groups. Aspartate aminotransferase and cholesterol levels in the FM35 and FM35+ groups were significantly higher than that in the FM70 group. The linoleic acid level in the muscle was significantly higher in the fish fed with the FM70 diet than in those fed with the FM45, FM35, and FM35+ diets. Thus, the LFM diet is suitable for juvenile olive flounder farming during six months.