• Title/Summary/Keyword: Tumor-specific T cells

Search Result 107, Processing Time 0.029 seconds

Generation of Renal Cell Carcinoma-specific CD4+/CD8+ T Cells Restricted by an HLA-39 from a RCC Patient Vaccinated with GM-CSF Gene-Transduced Tumor Cells

  • Jun, Do Youn;Moutner, Joseph;Jaffee, Elizabeth
    • IMMUNE NETWORK
    • /
    • v.3 no.2
    • /
    • pp.96-102
    • /
    • 2003
  • Background: Granulocyte-macrophage colony-stimulating factor (GM-CSF) gene-transduced tumor cell vaccines induce very potent systemic anti-tumor immunity in preclinical and clinical models. Our previous phase I clinical trial in patients with metastatic renal cell carcinoma (RCC) has demonstrated both immune cell infiltration at vaccine sites and T cell-mediated delayed-type hypersensitivity (DTH) response to whole tumor cell vaccines. Methods: To investigate the immune responses to autologous genetically- modified tumor cell vaccines, tumor-specific $CD8^+$ T cell lines were generated from peripheral blood lymphocytes (PBL) of a RCC patient 1.24 by repeated in vitro stimulation with either B7.1-transduced autologous RCC tumor cells or B7.1-transduced autologous tumor cells treated with interferon gamma ($IFN{\gamma}$), and cloned by limiting dilution. Results: Among several RCC-specific cytotoxic T lymphocytes (CTLs), a $CD4^+/CD8^+$ double positive T cell clone (17/A2) appeared to recognize $IFN{\gamma}$-treated autologous RCC restricted by HLA-B39. The 17/A2 also recognized other HLA-B39 positive RCC tumor cells after $IFN{\gamma}$ treatment. Conclusion: These results demonstrate that autologous RCC vaccination successfully generates the tumor-specific CTL 17/A2, and suggest that the presentation and recognition of the tumor antigen by the 17/A2 might be upregulated by $IFN{\gamma}$.

Antitumor Responses of Adoptively-Transferred Tumor-Specific T-Cell Cultures in a Murine Lymphoma Model

  • Kim, Hee-Sue;Lee, Hee-Gu;Lim, Jong-Seok;Lee, Ki-Young;Kim, Jae-Wha;Chung, Kyeong-Soo;Choe, Yong-Kyung;Choe, In-Seong;Chung, Tai-Wha;Kim, Kil-Hyoun
    • BMB Reports
    • /
    • v.28 no.6
    • /
    • pp.556-561
    • /
    • 1995
  • The purpose of this study was to establish an in vitro culture method of tumor-specific T cells, and determine the efficacy of the cultured tumor-specific cytotoxic T-lymphocytes (CTL) as an agent of anti-tumor immunotherapy against a murine lymphoma, TIMI.4. Tumor-specific T-lymphocytes derived from C57BL/6 mice (thy-1.2) immune to TIMI.4 were activated by in vitro stimulation with the irradiated TIMI.4 cells, and expanded by restimulation with TIMI.4 in the presence of the concanavalin A-stimulated rat spleen culture supernatant, and splenic antigen-presenting cells. In vitro restimulation enhanced markedly the proportion of $CD8^+$, a predominant surface marker of CTL and the cytotoxic activity in the cultured immune T cell population. The resulting TIMI.4-specific T cells were adoptively transferred into nude mice. The tumor cells residing in the host after 7 days of adoptive transfer to B6.PL (thy-1.1) mice were quantified by use of an antibody directed to the thy-1.2 allele. The TIMI.4 cells in the recipient nude mice were decreased in a dose-dependent manner. Anti-tumor activity of the TIMI.4-specific T cells was also demonstrated by a survival test, where the tumor-bearing nu/nu mice which received the activated T-cells survived about 30% longer than the control mice which received the tumor cells alone. These suggest that adoptive transfer of TIMI.4-specific T cells could be a candidate for effective therapy of the murine lymphoma.

  • PDF

Protective Antitumor Activity through Dendritic Cell Immunization is Mediated by NK Cell as Well as CTL Activation

  • Kim, Kwang-Dong;Kim, Jin-Koo;Kim, Se-Jin;Choe, In-Seong;Chung, Tae-Hwa;Choe, Yong-Kyung;Lim, Jong-Seok
    • Archives of Pharmacal Research
    • /
    • v.22 no.4
    • /
    • pp.340-347
    • /
    • 1999
  • Dendritic cells (DCs) are potent professional antigen-presenting cells (APC) capable of inducing the primary T cell response to antigen. Although tumor cells express target antigens, they are incapable of stimulating a tumor-specific immune response due to a defect in the costimulatory signal that is required for optimal activation of T cells. In this work, we describe a new approach using tumor-DC coculture to improve the antigen presenting capacity of tumor cells which does not require a source of tumor-associated antigen. Immunization of a weakly immunogenic and progressive tumor cocultured with none marrow-derived DCs generated an effective tumor vaccine. Immunization with the cocutured DCs was able to induce complete protectiv immunity against tumor challenges and was effective for the induction of tumor-specific CTL (cytotoxic T lymphocyte) activity. Furthermore, high NK cell activity was observed in mice in which tumors were rejected. In addition, immunization with tumor-pulsed DC s induced delayed tumor growth, but not tumor eradication in tumor-bearing mice. Our results demonstrate that coculture of DCs with tumors generated antitumor immunity due to the NK cell activation as well as tumor-specific T cell. This approach would be used for designing tumor vaccines using DCs when the information about tumor antigens is limited.

  • PDF

Strategies for Manipulating T Cells in Cancer Immunotherapy

  • Lee, Hyang-Mi
    • Biomolecules & Therapeutics
    • /
    • v.30 no.4
    • /
    • pp.299-308
    • /
    • 2022
  • T cells are attractive targets for the development of immunotherapy to treat cancer due to their biological features, capacity of cytotoxicity, and antigen-specific binding of receptors. Novel strategies that can modulate T cell functions or receptor reactivity provide effective therapies, including checkpoint inhibitor, bispecific antibody, and adoptive transfer of T cells transduced with tumor antigen-specific receptors. T cell-based therapies have presented successful pre-clinical/clinical outcomes despite their common immune-related adverse effects. Ongoing studies will allow us to advance current T cell therapies and develop innovative personalized T cell therapies. This review summarizes immunotherapeutic approaches with a focus on T cells. Anti-cancer T cell therapies are also discussed regarding their biological perspectives, efficacy, toxicity, challenges, and opportunities.

Dendritic Cell Based Cancer Immunotherapy: in vivo Study with Mouse Renal Cell Carcinoma Model (수지상세포를 이용한 항암 면역 치료: 생쥐 신장암 모델을 이용한 연구)

  • Lee, Hyunah;Choi, Kwang-Min;Baek, Soyoung;Lee, Hong-Ghi;Jung, Chul-Won
    • IMMUNE NETWORK
    • /
    • v.4 no.1
    • /
    • pp.44-52
    • /
    • 2004
  • Background: As a potent antigen presenting cell and a powerful inducer of antigen specific immunity, dendritic cells (DCs) are being considered as a promising anti-tumor therapeutic module. The expected therapeutic effect of DCs in renal cell carcinoma was tested in the mouse model. Established late-stage tumor therapeutic (E-T) and minimal residual disease (MRD) model was considered in the in vivo experiments. Methods: Syngeneic renal cell carcinoma cells (RENCA) were inoculated either subcutaneously (E-T) or intravenously (MRD) into the Balb/c mouse. Tumor cell lysate pulsed-DCs were injected twice in two weeks. Intraperitoneal DC injection was started 3 week (E-T model) or one day (MRD model) after tumor cell inoculation. Two weeks after the final DC injection, the tumor growth and the systemic immunity were observed. Therapeutic DCs were cultured from the bone marrow myeloid lineage cells with GM-CSF and IL-4 for 7 days and pulsed with RENCA cell lysate for 18 hrs. Results: Compared to the saline treated group, tumor growth (E-T model) or formation (MRD model) was suppressed in pulsed-DC treated group. RENCA specific lymphocyte proliferation was observed in the RENCA tumor-bearing mice treated with pulsed-DCs. Primary cytotoxic T cell activity against RENCA cells was increased in pulsed-DC treated group. Conclusion: The data suggest the possible anti-tumor effect of cultured DCs in established or minimal residual disease/metastasis state of renal cell carcinoma. Systemic tumor specific immunity including cytotoxic T cell activity was modulated also in pulsed-DC treated group.

Tumor-derived CD4+CD25+ Tregs Inhibit the Maturation and Antigen-Presenting Function of Dendritic Cells

  • Du, Yong;Chen, Xin;Lin, Xiu-Qing;Wu, Wei;Huang, Zhi-Ming
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.7
    • /
    • pp.2665-2669
    • /
    • 2015
  • CD4+CD25+regulatory T cells (Tregs) play a key role in regulation of immnue response and maintenance of self-tolerance. Studies have found Tregs could suppress tumor-specific T cell-mediated immune response and promote cancer progression. Depletion of Tregs can enhance antitumor immunity. Dendritic cells (DCs) are professional antigen-presenting cells and capable of activating antigen-specific immune responses, which make them ideal candidate for cancer immunotherapy. Now various DC vaccines are considered as effective treatment for cancers. The aim of this study was to evaluate variation of Tregs in BALB/C mice with hepatocellular carcinoma and investigate the interaction between tumor-derived Tregs, effector T cells (Teff) and splenic DCs. We found the percentages of Tregs/CD4+ in the peripheral blood of tumor-bearing mice were higher than in normal mice. Tumor-derived Tregs diminished the up-regulation of costimulatory molecule expression on splenic DCs, even in the presence of Teff cells and simultaneously inhibited IL-12 and $TNF-{\alpha}$ secretion by DCs.

The Role of Regulatory T Cells in Cancer

  • Ha, Tai-You
    • IMMUNE NETWORK
    • /
    • v.9 no.6
    • /
    • pp.209-235
    • /
    • 2009
  • There has been an explosion of literature focusing on the role of regulatory T (Treg) cells in cancer immunity. It is becoming increasingly clear that Treg cells play an active and significant role in the progression of cancer, and have an important role in suppressing tumor-specific immunity. Thus, there is a clear rationale for developing clinical strategies to diminish their regulatory influences, with the ultimate goal of augmenting antitimor immunity. Therefore, manipulation of Treg cells represent new strategies for cancer treatment. In this Review, I will summarize and review the explosive recent studies demonstrating that Treg cells are increased in patients with malignancies and restoration of antitumor immunity in mice and humans by depletion or reduction of Treg cells. In addition, I will discuss both the prognostic value of Treg cells in tumor progression in tumor-bearing hosts and the rationale for strategies for therapeutic vaccination and immunotherapeutic targeting of Treg cells with drugs and microRNA.

Enhanced CEA-specific Immune Responses by Tat-LLO Fusion Protein (Tat-LLO 융합 단백질에 의한 CEA 특이 항종양 면역 반응의 증가)

  • Yi, Soon-Aei;Sohn, Hyun-Jung;Kim, Chang-Hyun;Park, Mi-Young;Oh, Seong-Taek;Kim, Tai-Gyu
    • IMMUNE NETWORK
    • /
    • v.5 no.3
    • /
    • pp.172-178
    • /
    • 2005
  • Background: Carcinoembryonic antigen (CEA) is well-known soluble tumor marker frequently detectable in peripheral blood of carcinoma patients and considered as good target for antigen-specific immunotherapy. However, it is known that the induction of immune response to CEA is very difficult because CEA is a self-antigen expressed in fetal cells and weakly expressed in normal colorectal epithelial cells. To enhance anti-tumor immunity specific for CEA, recombinant CEA protein was modified using listeriolysin O (LLO) for endosomal lysis and trans activator of transcription (Tat) domain for transducing extracellular proteins into cytoplasm. Methods: After immunization using dendritic cells pulsed with Tat-CEA, both Tat-CEA and LLO, and both Tat-CEA and Tat-LLO, antibody titer to CEA and LLO, cytotoxic T lymphocyte activity and the frequency of IFN-${\gamma}$ producing T lymphocytes were measured. Results: Immunization using DC pulsed with both Tat-CEA and Tat-LLO protein showed the increasement of production of CEA-specific antibody in serum, cytotoxic T lymphocyte activity, the frequency of IFN-${\gamma}$ secreting T cells, compared with DC pulsed with both Tat-CEA and LLO. Furthermore the ratio of CD8+T cell to $CD4^+$ cell among CEA-specific T cells was increased in group pulsed with both Tat-CEA and Tat-LLO. Conclusion: These results suggested that DC vaccine using Tat-LLO could be used for the development of effective immunotherapy for the treatment of tumor.

Advanced T and Natural Killer Cell Therapy for Glioblastoma

  • Wan-Soo Yoon;Dong-Sup Chung
    • Journal of Korean Neurosurgical Society
    • /
    • v.66 no.4
    • /
    • pp.356-381
    • /
    • 2023
  • Although immunotherapy has been broadly successful in the treatment of hematologic malignancies and a subset of solid tumors, its clinical outcomes for glioblastoma are still inadequate. The results could be due to neuroanatomical structures such as the blood-brain-barrier, antigenic heterogeneity, and the highly immunosuppressive microenvironment of glioblastomas. The antitumor efficacy of endogenously activated effector cells induced by peptide or dendritic cell vaccines in particular has been insufficient to control tumors. Effector cells, such as T cells and natural killer (NK) cells can be expanded rapidly ex vivo and transferred to patients. The identification of neoantigens derived from tumor-specific mutations is expanding the list of tumor-specific antigens for glioblastoma. Moreover, recent advances in gene-editing technologies enable the effector cells to not only have multiple biological functionalities, such as cytokine production, multiple antigen recognition, and increased cell trafficking, but also relieve the immunosuppressive nature of the glioblastoma microenvironment by blocking immune inhibitory molecules, which together improve their cytotoxicity, persistence, and safety. Allogeneic chimeric antigen receptor (CAR) T cells edited to reduce graft-versus-host disease and allorejection, or induced pluripotent stem cell-derived NK cells expressing CARs that use NK-specific signaling domain can be a good candidate for off-the-shelf products of glioblastoma immunotherapy. We here discuss current progress and future directions for T cell and NK cell therapy in glioblastoma.

Antitumor Activity of Lentivirus-mediated Interleukin -12 Gene Modified Dendritic Cells in Human Lung Cancer in Vitro

  • Ali, Hassan Abdellah Ahmed;Di, Jun;Mei, Wu;Zhang, Yu-Cheng;Li, Yi;Du, Zhen-Wu;Zhang, Gui-Zhen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.2
    • /
    • pp.611-616
    • /
    • 2014
  • Objectives: Dendritic cell (DC)-based tumor immunotherapy needs an immunogenic tumor associated antigen (TAA) and an effective approach for its presentation to lymphocytes. In this study we explored whether transduction of DCs with lentiviruses (LVs) expressing the human interleukin-12 gene could stimulate antigen-specific cytotoxic T cells (CTLs) against human lung cancer cells in vitro. Methods: Peripheral blood monocyte-derived DCs were transduced with a lentiviral vector encoding human IL-12 gene (LV-12). The anticipated target of the human IL-12 gene was detected by RT-PCR. The concentration of IL-12 in the culture supernatant of DCs was measured by ELISA.Transduction efficiencies and CD83 phenotypes of DCs were assessed by flow cytometry. DCs were pulsed with tumor antigen of lung cancer cells (DC+Ag) and transduced with LV-12 (DC-LV-12+Ag). Stimulation of T lymphocyte proliferation by DCs and activation of cytotoxic T-lymphocytes (CTL) stimulated by LV-12 transduced DCs pulsed with tumor antigen against A549 lung cancer cells were assessed with methyl thiazolyltetrazolium (MTT). Results: A recombinant lentivirus expressing the IL-12 gene was successfully constructed. DC transduced with LV-12 produced higher levels of IL-12 and expressed higher levels of CD83 than non-transduced. The DC modified by interleukin -12 gene and pulsed with tumor antigen demonstrated good stimulation of lymphocyte proliferation, induction of antigen-specific cytotoxic T lymphocytes and antitumor effects. Conclusions: Dendritic cells transduced with a lentivirus-mediated interleukin-12 gene have an enhanced ability to kill lung cancer cells through promoting T lymphocyte proliferation and cytotoxicity.