• 제목/요약/키워드: Tumor necrosis factor receptor

검색결과 292건 처리시간 0.029초

Inhibitory Effects of Artemisia asiatica on Osteoclast Formation Induced by Periodontopathogens

  • Moon, Sun-Young;Choi, Bong-Kyu;Cha, Jeong-Heon;Min, Chon-Ki;Son, Mi-Won;Yoo, Yun-Jung
    • Food Science and Biotechnology
    • /
    • 제14권1호
    • /
    • pp.94-98
    • /
    • 2005
  • Bone resorption surrounding tooth root causes tooth loss in periodontitis patients. Osteoclast has bone resorption activity. Effects of Artemisia asiatica on bone resorption induced by periodontopathogens, Porphyromonas gingivalis and Treponema denticola, were examined using co-culture systems of mouse osteoblasts and bone marrow cells. Addition of A. asiatica ethanol extract to bacterial sonicate abolished bacteria-induced osteoclastogenesis. To determine inhibitory mechanism of A. asiatica against osteoclastogenesis, effects of A. asiatica on expressions of osteoclastogenesis-inducing factors such as receptor activator of NF-${\kappa}B$ ligand (RANKL), prostaglandin $E_2\;(PGE_2)$, interleukin (IL)-1, and tumor necrosis factor (TNF)-${\alpha}$, in osteoblasts were examined. A. asiatica suppressed expressions of RANKL, $PGE_2$, IL-$1{\beta}$, and TNF-${\alpha}$ increased by each bacterial sonicate. These results suggest inhibitory action of A. asiatica against osteoclastogenesis is associated with down-regulations of RANKL, $PGE_2$ IL-$1{\beta}$, and TNF-${\alpha}$ expressions.

Acanthoic acid blocks production of pro-inflammatory mediators by inhibiting the ERK activation in trypsin-stimulated human leukemic mast cells

  • Kang, Ok-Hwa;Tae, Jin;Choi, Yeon-A;Kwon, Dong-Yeul;Kim, Yun-Kyung;Cai, Xing-Fu;Kim, Young-Ho;Bae, Ki-Hwan;Lee, Young-Mi
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.88.3-89
    • /
    • 2003
  • Acanthoic acid (AA) is a pimaradiene diterpene isolated from the Korean medicinal plant, Acanthopanax koreanum (Araliaceae), which has been traditionally used as a tonic and sedative as well as in the treatment of rheumatism and diabetes in korea. Proteinase-activated receptor-2 (PAR-2) agonist trypsin plays a role in inflammation, and human leukemic mast cells (HMC-l) express PAR-2. In the present study, the effect of acanthoic acid on production of tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) and tryptase in trypsin-stimulated HMC-1 was examined. (omitted)

  • PDF

Anti-inflammatory Properties of Meso-dihydroguaiaretic Acid in Lipopolysaccharide-induced Macrophage

  • ;;김택중
    • 대한의생명과학회지
    • /
    • 제16권2호
    • /
    • pp.91-95
    • /
    • 2010
  • Meso-dihydroguaiaretic acid (MDGA) is a medicinal herbal product isolated from the bark of Machilus thunbergii Sieb. et Zucc. (Lauraceae). It exhibits a neuroprotective effect and also exerts cytotoxicity to certain cancer cells. In the present study, we investigated whether or not MDGA inhibits inflammatory reaction through the inhibition of nitric oxide (NO) generation. The results showed that MDGA (5~$25 {\mu}M$) inhibited 100 ng/ml lipopolysaccharide (LPS)- induced NO generation in macrophage Raw 264.7 cells in a concentration-dependent manner. We also measured the cytotoxic effects of MDGA on Raw 264.7 cells and found no evidence of cytotoxicity. The inhibition of NO generation by MDGA was consistent with the inhibitory effect on the expression of inducible nitric oxide synthase (iNOS). In addition, MDGA inhibited the LPS-induced gene expression of $interleukin-1{\beta}$ $(IL-1{\beta})$ as well as tumor necrosis $factor-{\alpha}$ $(TNF-{\alpha})$. The present results may provide that MDGA has anti-inflammatory properties through inhibition of the toll-like receptors (TLRs) pathway, and suggest that MDGA can be used as an anti-inflammatory agent.

The Regulatory Effects of Trans-chalcone on Adipogenesis

  • Han, Younho
    • International Journal of Oral Biology
    • /
    • 제43권1호
    • /
    • pp.29-35
    • /
    • 2018
  • It is noted that chalcone derivatives have characteristic diverse pharmacological properties, and that precise evidence has been growing that they could regulate a tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$) induced insulin resistance. The purpose of the present investigation is to elucidate the effects of the identified chalcone derivatives on adipogenesis, and to find the underlying mechanism of action in that case. Consequently, we first investigated whether the chalcone derivatives could affect the identified $PPAR{\gamma}$-induced transcriptional activity on the proliferator-activated receptor response elements (PPRE) at target promoters, and find that trans-chalcone most significantly increased the $PPAR{\gamma}$-induced transcriptional activity. Additionally, we confirmed that there were up-regulatory effects of trans-chalcone during the adipogenesis and lipid accumulation, and on the mRNA of adipogenic factors in 3T3-L1 cells. Next, we examined the effect of trans-chalcone on the inhibition induced by $TNF-{\alpha}$ on adipogenesis. To that end, we noted that the treatment with trans-chalcone attenuated the effect of $TNF-{\alpha}$ mediated secretion of various adipokines that are involved in insulin sensitivity. For this reason, we noted that this study clearly demonstrates that trans-chalcone enhanced adipogenesis, in part, by its potent effect on $PPAR{\gamma}$ activation and by its reverse effect on $TNF-{\alpha}$.

Analysis of Gene Expression in Human Dermal Fibroblasts Treated with Senescence-Modulating COX Inhibitors

  • Han, Jeong A.;Kim, Jong-Il
    • Genomics & Informatics
    • /
    • 제15권2호
    • /
    • pp.56-64
    • /
    • 2017
  • We have previously reported that NS-398, a cyclooxygenase-2 (COX-2)-selective inhibitor, inhibited replicative cellular senescence in human dermal fibroblasts and skin aging in hairless mice. In contrast, celecoxib, another COX-2-selective inhibitor, and aspirin, a non-selective COX inhibitor, accelerated the senescence and aging. To figure out causal factors for the senescence-modulating effect of the inhibitors, we here performed cDNA microarray experiment and subsequent Gene Set Enrichment Analysis. The data showed that several senescence-related gene sets were regulated by the inhibitor treatment. NS-398 up-regulated gene sets involved in the tumor necrosis factor ${\beta}$ receptor pathway and the fructose and mannose metabolism, whereas it down-regulated a gene set involved in protein secretion. Celecoxib up-regulated gene sets involved in G2M checkpoint and E2F targets. Aspirin up-regulated the gene set involved in protein secretion, and down-regulated gene sets involved in RNA transcription. These results suggest that COX inhibitors modulate cellular senescence by different mechanisms and will provide useful information to understand senescence-modulating mechanisms of COX inhibitors.

Effect of Lactobacillus Fermentation on the Anti-Inflammatory Potential of Turmeric

  • Yong, Cheng Chung;Yoon, Yonghee;Yoo, Hee Sub;Oh, Sejong
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권10호
    • /
    • pp.1561-1569
    • /
    • 2019
  • Curcumin, the major bioactive constituent of turmeric, has been reported to have a wide range of pharmacological benefits; however, the low solubility in water has restricted its systemic bioavailability and therapeutic potential. Therefore, in the current study, we aimed to investigate the effect of turmeric fermentation on its curcumin content and anti-inflammatory activity by using several lactic acid bacteria. Fermentation with Lactobacillus fermentum significantly increased the curcumin content by 9.76% while showing no cytotoxicity in RAW 246.7 cells, as compared to the unfermented turmeric, regardless of the concentration of L. fermentum-fermented turmeric. The L. fermentum-fermented turmeric also promoted cell survival; a significantly higher number of viable cells in lipopolysaccharide (LPS)-induced RAW 264.7 cells were observed as compared to those treated with unfermented turmeric. It also displayed promising DPPH scavenging ($7.88{\pm}3.36%$) and anti-inflammatory activities by significantly reducing the nitrite level and suppressing the expression of the pro-apoptotic tumor necrosis factor-alpha and Toll-like receptor-4 in LPS-induced RAW 264.7 cells. Western blot analysis further revealed that the anti-inflammatory activity of the fermented turmeric was exerted through suppression of the c-Jun N-terminal kinase signal pathway, but not in unfermented turmeric. Taken together, the results suggested that fermentation with lactic acid bacteria increases the curcumin content of turmeric without increasing its cytotoxicity, while strengthening the specific pharmacological activity, thus, highlighting its potential application as a functional food ingredient.

Anti-inflammatory Effects of Metformin on Neuro-inflammation and NLRP3 Inflammasome Activation in BV-2 Microglial Cells

  • Ha, Ji-Sun;Yeom, Yun-Seon;Jang, Ju-Hun;Kim, Yong-Hee;Im, Ji In;Kim, In Sik;Yang, Seung-Ju
    • 대한의생명과학회지
    • /
    • 제25권1호
    • /
    • pp.92-98
    • /
    • 2019
  • Metformin is a drug used for the treatment of diabetes and is associated with anti-inflammatory reaction, but the underlying mechanism is unclear. In this study, we investigated the effect of metformin on the inflammatory response in BV-2 microglial cells induced by lipopolysaccharide (LPS) and S100 calcium-binding protein A8 (S100A8). The results revealed that metformin significantly attenuated several inflammatory responses in BV-2 microglial cells, including the secretion of pro-inflammatory cytokines, such as tumor necrosis factor-${\alpha}$ and interleukin (IL)-6, involved in the activation of Beclin-1, a crucial regulator of autophagy. In addition, metformin inhibited the LPS-induced phosphorylation of ERK. Metformin also suppressed the activation of NOD-like receptor pyrin domain containing 3 inflammasomes composed of NLRP3, caspase-1, and apoptosis-associated speck like protein containing a caspase recruitment domain, which are involved in the innate immune response. Notably, metformin decreased the secretion of S100A8-induced IL-6 production. These findings suggest that metformin alleviates the neuroinflammatory response via autophagy activation.

Latilactobacillus curvatus BYB3 Isolated from Kimchi Alleviates Dextran Sulfate Sodium (DSS)-Induced Colitis in Mice by Inhibiting IL-6 and TNF-R1 Production

  • Wang, Xing;Li, Dingyun;Meng, Ziyao;Kim, Kiyeop;Oh, Sejong
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권3호
    • /
    • pp.348-354
    • /
    • 2022
  • Recent studies have shown that probiotics have health-promoting effects, particularly intestinal immune modulation. In this study, we focused on the immunomodulatory properties of Latilactobacillus curvatus BYB3, formerly called Lactobacillus curvatus, isolated from kimchi. In a mouse model of 14-day dextran sulfate sodium (DSS)-induced colitis, treatment with L. curvatus BYB3 significantly decreased the disease activity index, colon length, and weight loss. Moreover, histological analyses showed that L. curvatus BYB3 protected the structural integrity of the intestinal epithelial layer and mucin-secreting goblet cells from DSS-induced damage, with only slight infiltration by immune cells. To evaluate the molecular mechanisms underlying L. curvatus BYB3-driven inhibition of interleukin 6 production, possible in vivo anti-inflammatory effects of L. curvatus BYB3 were examined in the same mouse model. In addition, significantly lower levels of IL-6 and tumor necrosis factor receptor 1 upregulation were seen in the DSS+BYB3 group (compared to that in the DSS group). These results indicate that L. curvatus BYB3 exhibits health-promoting effects via immune modulation; and therefore, it can be used to treat various inflammatory diseases.

Immunostimulatory Activity of Hibiscus syriacus L. Leaves in Mouse Macrophages, RAW264.7 cells, and Immunosuppressed Mice

  • Na Gyeong Geum;Ju Hyeong Yu;So Jung Park;Min Yeong Choi;Jae Won Lee;Gwang Hun Park;Hae-Yun Kwon;Jin Boo Jeong
    • 한국자원식물학회지
    • /
    • 제35권6호
    • /
    • pp.697-703
    • /
    • 2022
  • Under the COVID-19 pandemic, interest in immune enhancement is increasing. Although the immune-enhancing activity of plants of the genus Hibiscus has been reported, there is no study on the immune-enhancing activity of H. syriacus. Thus, in this study, we investigated the immune-enhancing activity of Hibiscus syriacus leaves (HSL) in mouse macrophages, RAW264.7 cells, and immunosuppressed mice. HSL increased the production of immunostimulatory factors such as nitric oxide (NO), inducible nitric oxide synthase (iNOS), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) and activated the phagocytosis in RAW264.7 cells. The HSL-mediated production of immunostimulatory factors was dependent on toll-like receptor 4 (TLR4), p38, and c-Jun N-terminal kinase (JNK) in RAW264.7 cells. In the immunosuppressed mouse model, HSL increased the spleen index, the levels of the cytokines, and the numbers of lymphocytes, neutrophils, and monocytes. Taken together, HSL may be considered to have immune-enhancing activity and be expected to be used as a potential immune-enhancing agent.

Immune-Enhancing Effect of Hibiscus syriacus Leaves in RAW264.7 Cells and Cyclophosphamided-induced Immunosuppressed Mice

  • Seung Woo Im;Hyeok Jin Choi;Ju-Hyeong Yu;So Jeong Park;Jae Won Lee;Jin Boo Jeong
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2022년도 추계학술대회
    • /
    • pp.92-92
    • /
    • 2022
  • Under the COVID-19 pandemic, interest in immune enhancement is increasing. Although the immune-enhancing activity of plants of the genus Hibiscus has been reported, there is no study on the immune-enhancing activity of H. syriacus. Thus, in this study, we investigated the immune-enhancing activity of Hibiscus syriacus leaves (HSL) in mouse macrophages, RAW264.7 cells, and immunosuppressed mice. HSL increased the production of immunostimulatory factors such as nitric oxide (NO), inducible nitric oxide synthase (iNOS), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) and activated the phagocytosis in RAW264.7 cells. The HSL-mediated production of immunostimulatory factors was dependent on toll-like receptor 4 (TLR4), p38, and c-Jun N-terminal kinase (JNK) in RAW264.7 cells. In the immunosuppressed mouse model, HSL increased the spleen index, the levels of the cytokines, and the numbers of lymphocytes, neutrophils, and monocytes. Taken together, HSL may be considered to have immune-enhancing activity and be expected to be used as a potential immune-enhancing agent.

  • PDF