• 제목/요약/키워드: Tumor micro-environment

검색결과 6건 처리시간 0.024초

종양 미세 환경 내 대식세포에서 혈관 신생 조절 인자로서의 TNF-α에 의한 IFN-γ의 분비 조절 (Production of IFN-γ by TNF-α in Macrophages from Tumor Micro Environment; Significance in Angiogenic Switch Control)

  • 표석능;백소영;곽장동;박대섭;조성준;이현아
    • IMMUNE NETWORK
    • /
    • 제3권1호
    • /
    • pp.53-60
    • /
    • 2003
  • Background: The role of macrophages in tumor angiogenesis is known to be the production of angiogenic cytokines and growth factors including TNF-${\alpha}$. Recently, macrophage also can produce the INF-${\gamma}$ that is being studied to be involved in angiogenic inhibition. Thus, the importance of macrophages in tumor angiogenesis is might being an angiogenic switch. Thus, the hypothesis tested here is that TNF-${\alpha}$ can modulate the INF-${\gamma}$ production in the macrophages from tumor environment as a part of tumor angiogenic switch. Methods: Macrophages in tumor environment were obtained from the peritoneal cavity of C57BL/6 mice injected with B16F10 melanoma cell line for 6 or 11 days. $Mac1^+$-macrophages were purified using magnetic bead ($MACs^{TM}$; Milteny Biotech, Germany) and cultured with various concentrations of TNF-${\alpha}$ for various time points at $37^{\circ}C$. The supernatants were analyzed for IFN-${\gamma}$ or VEGF by ELISA kit (Endogen, Woburn, MA). Results: Residential macrophages from the peritoneal cavity did not respond to LPS or TNF-${\alpha}$ to produce INF-${\gamma}$. However, the cells from tumor environment produced IFN-${\gamma}$ as well as VEGF and upregulated by the addition of LPS or TNF-${\alpha}$. RT-PCR analysis revealed the external TNF-${\alpha}$-induced IFN-${\gamma}$ gene expression in the macrophages from tumor environment. Conclusion: The overall data suggest that the macrophages in tumor environment might have an important role not only in angiogenic signal but also in anti-angiogenic signal by producing related cytokines. And TNF-${\alpha}$ might be a key cytokine in tumor angiogenic switch.

혈관모사 마이크로채널이 장착된 3D 종양 세포 배양 시스템의 제작 및 검증 연구 (Fabrication and validation study of a 3D tumor cell culture system equipped with bloodvessle-mimik micro-channel)

  • 박정연;고범석;김기영;이동목;윤길상
    • Design & Manufacturing
    • /
    • 제15권2호
    • /
    • pp.11-16
    • /
    • 2021
  • Recently, three-dimensional (3D) cell culture systems, which are superior to conventional two-dimensional (2D) vascular systems that mimic the in vivo environment, are being actively studied to reproduce drug responses and cell differentiation in organisms. Conventional two-dimensional cell culture methods (scaffold-based and non-scaffold-based) have a limited cell growth rate because the culture cannot supply the culture medium as consistently as microvessels. To solve this problem, we would like to propose a 3D culture system with an environment similar to living cells by continuously supplying the culture medium to the bottom of the 3D cell support. The 3D culture system is a structure in which microvascular structures are combined under a scaffold (agar, collagen, etc.) where cells can settle and grow. First, we have manufactured molds for the formation of four types of microvessel-mimicking chips: width / height ①100 ㎛ / 100 ㎛, ②100 ㎛ / 50 ㎛, ③ 150 ㎛ / 100 ㎛, and ④ 200 ㎛ / 100 ㎛. By injection molding, four types of microfluidic chips were made with GPPS (general purpose polystyrene), and a 100㎛-thick PDMS (polydimethylsiloxane) film was attached to the top of each microfluidic chip. As a result of observing the flow of the culture medium in the microchannel, it was confirmed that when the aspect ratio (height/width) of the microchannel is 1.5 or more, the fluid flows from the inlet to the outlet without a backflow phenomenon. In addition, the culture efficiency experiments of colorectal cancer cells (SW490) were performed in a 3D culture system in which PDMS films with different pore diameters (1/25/45 ㎛) were combined on a microfluidic chip. As a result, it was found that the cell growth rate increased up to 1.3 times and the cell death rate decreased by 71% as a result of the 3D culture system having a hole membrane with a diameter of 10 ㎛ or more compared to the conventional commercial. Based on the results of this study, it is possible to expand and build various 3D cell culture systems that can maximize cell culture efficiency by cell type by adjusting the shape of the microchannel, the size of the film hole, and the flow rate of the inlet.

MicroRNA-126은 난소 종양세포의 줄기세포 전사인자 (Sox2와 Lin28) 발현을 조절한다 (MicroRNA-126 Regulates the Expression of Stem Cell Transcription Factors (Sox2 and Lin28) in Various Ovarian Tumors)

  • 박호;제갈승주
    • 대한임상검사과학회지
    • /
    • 제47권4호
    • /
    • pp.298-305
    • /
    • 2015
  • 최근 종양을 극복하고자 하는 새로운 접근 방법가운데 하나로, 종양세포내에 발현되는 줄기세포 전사인자들(Oct4, Sox2, KLF4 and Lin28)을 억제하여 종양을 치료하는 연구들이 증가하고 있다. 본 실험은 미분화 전사인자를 표적(조절)하는 microRNA-126을 이용하여 난소종양세포들(6종: HSC832(t)c, Ovcar3, Skov3, PA-1, TOV21G and Tov112D)들 생존과 성장에 어떠한 생물학적 변화를 유도하는지 연구하였다. Scramble과 microRNA-126를 난소종양세포들에 처리 후 세포모양 관찰결과 Skov3를 제외한 난소 종양세포들에서 형태학적 모양 변성과 부유현상을 관찰하였다. CCK-8을 이용한 세포분열능 분석에서 Skov3를 제외한 난소 종양세포들의 분열능력이 점차적으로 감소되는 것을 확인하였다. 특히 Tov112D, Tov21G and PA-1에서 각 시간대별로 뚜렷한 세포분열 능력 감소를 확인할 수 있었다. RT-PCR결과 미분화 전사인자들(Sox2, Lin28)의 발현감소를 확인할 수 있었다. 이러한 결과들은 microRNA-126이 다양한 난소 종양세포들을 표적하여 세포분열능과 사멸을 유도할 수 있는 가역적 환경(유전자 발현조절)을 제공함과 동시에 임상 치료에 대한 분자생물학적 단서를 제공할 수 있을 것이다.

Tristetraprolin Overexpression in Gastric Cancer Cells Suppresses PD-L1 Expression and Inhibits Tumor Progression by Enhancing Antitumor Immunity

  • Guo, Jian;Qu, Huiheng;Shan, Ting;Chen, Yigang;Chen, Ye;Xia, Jiazeng
    • Molecules and Cells
    • /
    • 제41권7호
    • /
    • pp.653-664
    • /
    • 2018
  • The RNA-binding protein tristetraprolin (TTP) binds to adenosine-uridine AU-rich elements in the 3'-untranslated region of messenger RNAs and facilitates rapid degradation of the target mRNAs. Therefore, it regulates the expression of multiple cancer and immunity-associated transcripts. Furthermore, a lack of TTP in cancer cells influences cancer progression and predicts poor survival. Although the functions of TTP on cancer cells have previously been researched, the mechanism of TTP on the interaction between cancer cells with their micro-environment remains undiscovered. In this study, we admed to determine the role of cancer cell TTP during the interaction between tumor and immune cells, specifically regulatory T cells (Tregs). We evaluate the capability of TTP to modulate the antitumor immunity of GC and explored the underlying mechanism. The overexpression of TTP in GC cells dramatically increased peripheral blood mononuclear lymphocyte (PBML) -mediated cytotoxicity against GC cells. Increased cytotoxicity against TTP-overexpressed GC cells by PBMLs was determined by Treg development and infiltration. Surprisingly, we found the stabilization of programmed death-ligand 1 (PD-L1) mRNA was declining while TTP was elevated. The PD-L1 protein level was reduced in TTP-abundant GC cells. PD-L1 gas been found to play a pivotal role in Treg development and functional maintenance in immune system. Taken together, our results suggest the overexpression of TTP in GC cells not only affects cell survival and apoptosis but also increases PBMLs -mediated cytotoxicity against GC cells to decelerate tumor progression. Moreover, we identified PD-L1 as a critical TTP-regulated factor that contributes to inhibiting antitumor immunity.

Association of miR-193b Down-regulation and miR-196a up-Regulation with Clinicopathological Features and Prognosis in Gastric Cancer

  • Mu, Yong-Ping;Tang, Song;Sun, Wen-Jie;Gao, Wei-Min;Wang, Mao;Su, Xiu-Lan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권20호
    • /
    • pp.8893-8900
    • /
    • 2014
  • Dysregulated expression of microRNAs (miRNAs) has been shown to be closely associated with tumor development, progression, and carcinogenesis. However, their clinical implications for gastric cancer remain elusive. To investigate the hypothesis that genome-wide alternations of miRNAs differentiate gastric cancer tissues from those matched adjacent non-tumor tissues (ANTTs), miRNA arrays were employed to examine miRNA expression profiles for the 5-pair discovery stage, and the quantitative real-time polymerase chain reaction (qRTPCR) was applied to validate candidate miRNAs for 48-pair validation stage. Furthermore, the relationship between altered miRNA and clinicopathological features and prognosis of gastric cancer was explored. Among a total of 1,146 miRNAs analyzed, 16 miRNAs were found to be significantly different expressed in tissues from gastric cancer compared to ANTTs (p<0.05). qRT-PCR further confirmed the variation in expression of miR-193b and miR-196a in the validation stage. Down-expression of miR-193b was significantly correlated with Lauren type, differentiation, UICC stage, invasion, and metastasis of gastric cancer (p<0.05), while over-expression of miR-196a was significantly associated with poor differentiation (p=0.022). Moreover, binary logistic regression analysis demonstrated that the UICC stage was a significant risk factor for down-expression of miR-193b (adjusted OR=8.69; 95%CI=1.06-56.91; p=0.043). Additionally, Kaplan-Meier survival curves indicated that patients with a high fold-change of down-regulated miR-193b had a significantly shorter survival time (n=19; median survival=29 months) compared to patients with a low fold-change of down-regulated miR-193b (n=29; median survival=54 months) (p=0.001). Overall survival time of patients with a low fold-change of up-regulated miR-196a (n=27; median survival=52 months) was significantly longer than that of patients with a high fold-change of up-regulated miR-196a (n=21; median survival=46 months) (p=0.003). Hence, miR-193b and miR-196a may be applied as novel and promising prognostic markers in gastric cancer.

FDG를 이용한 Brain PET에서 Glucose Level이 영상에 미치는 영향 (Effect of Glucose Level on Brain FDG-PET Images)

  • 김인영;이용기;안성민
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제40권2호
    • /
    • pp.275-280
    • /
    • 2017
  • $^{18}F$-FDG는 종양 외에도 뇌, 심근과 같은 정상조직에도 섭취가 될 수 있고 주변 환경에 의해서 정상조직의 섭취량이 변화할 수 있다. $^{18}F$-FDG를 이용한 검사 시에 전처리가 필요한데, 전처리로 종양조직과 정상조직의 영상적대조도를 증가시킬 수 있다. 따라서 본 연구에서는 소 동물을 이용하여 당 대사가 항상 활발한 뇌에서 $^{18}F$-FDG를 이용한 PET검사 시 혈당수치가 PET영상에 어떠한 영향을 미치는지 알아보았다. 총 14마리의 ICR-mouse를 이용하여 $^{18}F$-FDG를 주사 후 micro PET을 이용하였으며, 영상을 획득하여 금식 유무에 따라 비교 분석하였다. 그 결과 금식을 한 쥐의 뇌에서 평균 표준섭취계수값이 금식을 하지 않은 쥐보다 0.84 더 높게 나왔으며, 금식을 하지 않은 쥐에서 브레인 외의 장기에 많은 집적을 보였으며, 주변 노이즈가 증가한 것을 확인하였다. 시간방사능곡선의 비교에서도 금식을 하지 않은 쥐보다 금식을 한 쥐의 시간방사능곡선의 초반섭취율과 곡선 상승률이 높은 것을 확인하였다. $^{18}F$-FDG를 이용한 brain PET검사에서 금식의 전 처치는 뇌의 기능을 평가하는데 중요하다는 것을 알 수 있었고 카페인 성분이나 다른 전처리 항목도 추후 실험을 통하여 영상에 미치는지 지속적으로 연구한다면 환자의 방사선 피폭선량 감소에 기여할 것이라 사료된다.