• Title/Summary/Keyword: Tumor metabolism

Search Result 234, Processing Time 0.026 seconds

Blueberry, blackberry, and blackcurrant differentially affect plasma lipids and pro-inflammatory markers in diet-induced obesity mice

  • Kim, Bohkyung;Lee, Sang Gil;Park, Young-Ki;Ku, Chai Siah;Pham, Tho X.;Wegner, Casey J.;Yang, Yue;Koo, Sung I.;Chun, Ock K.;Lee, Ji-Young
    • Nutrition Research and Practice
    • /
    • v.10 no.5
    • /
    • pp.494-500
    • /
    • 2016
  • BACKGROUND/OBJECTIVES: Evidence indicates that berry anthocyanins are anti-atherogenic, antioxidant, and anti-inflammatory. However, berries differ vastly in their anthocyanin composition and thus potentially in their biological and metabolic effects. The present study compared hypolipidemic, antioxidant, and anti-inflammatory properties of blueberry (BB), blackberry (BK), and blackcurrant (BC) in a diet-induced obesity (DIO) mouse model. MATERIALS/METHODS: Male C57BL/6J mice were fed a high fat (HF; 35% fat, w/w) control diet or a HF diet supplemented with freeze-dried 5% BB, 6.3% BK or 5.7% BC for 12 weeks (10 mice/group) to achieve the same total anthocyanin content in each diet. Plasma lipids, antioxidant status and pro-inflammatory cytokines were measured. The expression of genes involved in antioxidant defense, inflammation, and lipid metabolism was determined in the liver, epididymal adipose tissue, proximal intestine, and skeletal muscle. Histological analysis was performed to identify crown-like structure (CLS) in epididymal fat pads to determine macrophage infiltration. RESULTS: No differences were noted between the control and any berry-fed groups in plasma levels of liver enzymes, insulin, glucose, ferric reducing antioxidant power, superoxide dismutase, and tumor necrosis factor ${\alpha}$. However, BK significantly lowered plasma triglyceride compared with the HF control and other berries, whereas BC significantly reduced F4/80 mRNA and the number of CLS in the epididymal fat pad, indicative of less macrophage infiltration. CONCLUSIONS: The present study provides evidence that BB, BK and BC with varying anthocyanin composition differentially affect plasma lipids and adipose macrophage infiltration in DIO mice, but with no differences in their antioxidant capacity and anti-inflammatory potential.

The Effects of Haedoksamul-tang on Oxidative Stress and Hyperlipidemia in LPS-induced ICR Mouse (해독사물탕(解毒四物湯)이 LPS 유도 ICR mouse의 산화스트레스 및 고지혈증에 미치는 효과)

  • Choi, Gyu-ho;Jung, Yu-sun;Shin, Hyeon-cheol
    • The Journal of Korean Medicine
    • /
    • v.37 no.1
    • /
    • pp.77-89
    • /
    • 2016
  • Objectives: The present study was conducted to examine whether Haedoksamul-tang (HS), a traditional oriental herbal medicine, have beneficail effects on anti-inflammation and dyslipidemia in lipopolysaccharide (LPS)-induced ICR mouse. Methods: Twenty four 8-week old male ICR mouse were divided into four groups: normal untreated; LPS treatment only; HS 10 mg/kg plus LPS treatment; and HS 30 mg/kg plus LPS treatment. HS was orally administered per day for 2days. Twenty-four hours after LPS injection (10 mg/kg/day, i.p.), all the mice were sacrificed, and serological changes were evaluated. The levels of nuclear factor-${\kappa}B$ (NF-${\kappa}B$), sterol regulatory element-binding transcription protein 1 (SREBP-1) activity and cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), tumor necrosis factor a (TNF-a), monocyte chemotactic protein 1 (MCP-1), acetyl-CoA carboxylase a (ACCa) expression were analyzed in Western blot analysis. Results: HS inhibited oxidative stress in the liver of LPS-induced ICR mice. The LPS-induced ICR mice exhibited the increase of NF-${\kappa}B$ activity and COX-2, iNOS, TNF-a, MCP-1 expressions in the liver, while HS treatment significantly inhibited them. Moreover, The administration of HS significantly decreased the elevated serum triglyceride and down-regulated the levels of SREBP-1, ACCa in the liver of LPS-induced ICR mice. Conclusions: In conclusion, HS could have hepato-protective effects against the oxidative stress-related inflammation and abnormal lipid metabolism.

Effects of Sayeok-tang on Papain-Induced Osteoarthritis in Mice (Papain으로 유도된 골관절염 생쥐 모델에서 사역탕(四逆湯)의 항골관절염 효능에 관한 연구)

  • Kung, Shyang En;Oh, Min Seok
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.27 no.2
    • /
    • pp.212-224
    • /
    • 2013
  • This study intends to clarify how Sayeok-tang(here in after reffered to SYT) affect C57BL/10 mice whose osteoarthritis was induced by papain. Osteoarthritis was induced by injecting papain in the knee joint of 3 groups(n=6) of mice. Normal group was non-treatment group and was not injected papain, whereas control mice were orally administered with $200{\mu}{\ell}$ of physiological saline. Positive comparison group was medicated with 100 mg/kg of Joins$^{(R)}$ mixed with $200{\mu}{\ell}$ of physiological saline. Experimental group was medicated with 400 mg/kg of SYT mixed with $200{\mu}{\ell}$ of physiological saline. Both Positive and experimental comparison groups were orally medicated once per day for 4 weeks. After the experiment, the functions of liver and kidney, inflammation cytokine values within serum, degree of revelation for inflammation cytokine genes, immune cells within blood, metabolism of arachidonic acid and amount of cartilage were measured and histopathological changes in the knee joint structures were observed. As results, SYT had no significant effect on the liver and kidney functions. Interleukin-$1{\beta}$(IL-$1{\beta}$), interleukin-6(IL-6), monocyte chemo attractant protein-1(MCP-1) and tumor necrosis factor-${\alpha}$(TNF-${\alpha}$) were significantly decreased. Inflammation cytokines in joints were all significantly decreased. Prostaglandin $E_2(PGE_2)$, thromboxane $B_2(TXB_2)$ were significantly decreased. Destruction of cartilage on micro computed tomography(CT)-arthrography was meaningfully decreased. In terms of histopathology, infiltration of inflammation, proliferation of synovial membrane, subsidence of cartilage and bone due to penetration of excessive formation of synovial cell and destruction of cartilage were small. Based on all results mentioned above, Sayeok-tang(SYT) is believed to be meaningful for suppressing the progress of osteoarthritis and its treatments because of its anti-inflammatory effects and alleviation of pain with histopathological effective efficacy.

The Polymorphism of Hypoxia-inducible Factor-1a Gene in Endometrial Cancer

  • Kafshdooz, Leila;Tabrizi, Ali Dastranj;Mohaddes, Seyyed Mojtaba;Kafshdooz, Tayebeh;Akbarzadeh, Abolfazl;Ghojazadeh, Morteza;Gharesouran, Jalal
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.23
    • /
    • pp.10393-10396
    • /
    • 2015
  • Background: Endometral carcinoma is the most common malignant tumor of the female genital tract and the fourth most common cancer in women after breast, colorectal and lung cancers Hypoxia-inducible factor-1 (HIF-1) is a key transcription factor that regulates cellular response to hypoxia HIF-1 plays important roles in the development and progression of cancer through activation of various genes that are involved in crucial aspects of cancer biology, including angiogenesis, energy metabolism, vasomotor function, erythropoiesis, and cell survival. In this study, we aimed to investigate the association between HIF-1 1772 C/T polymorphisms and endometrial cancer. Materials and Methods: 75 patients with endometrial carcinoma and 75 patients whose underwent hysterectomy for non tumoral indication selected for evaluation of HIF-1 1772 C/T polymorphisms by PCR-RFLP and sequencing. Results: For the 1772 C/T polymorphism, the analysis showed that the T allele and genotype TT were significantly associated with endometrial cancer risk. Conclusions: Our results suggest that the C1772T polymorphism of the HIF-1a may be associated with endometrial cancers.

Lack of Association between Serum Adiponectin/Leptin Levels and Medullary Thyroid Cancer

  • Abooshahab, Raziyeh;Yaghmaei, Parichehr;Ghadaksaz, Hoda Gholab;Hedayati, Mehdi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.8
    • /
    • pp.3861-3864
    • /
    • 2016
  • Background: Adipokines are bioactive proteins that mediate metabolism, inflammation and angiogenesis. Changes in the secretion of key serum adipokines - adiponectin and letpin - may be associated with obesity, cancer and metabolic disorders. Thyroid cancer is one of the most important types of endocrine cancer. Therefore, investigating the association between serum levels of adiponectin and leptin and thyroid cancer might be important. The purpose of this study was to assess adiponectin and leptin levels in medullary thyroid carcinoma (MTC) cases in order to identify novel tumor markers. Materials and Methods: This research was based on a case-control study, including 45 patients with medullary thyroid cancer (21 men and 24 women) and 45 healthy controls (24 males and 21 females). Adiponectin and leptin levels were measured by ELISA in both groups. Height and weight were measured and body mass index (kg/m2) was calculated. Results: Adiponectin and leptin levels were not significantly different between medullary thyroid carcinomas and the control group. Also, there was no correlation among age and body mass index and the disease. Conclusions: These results suggest that changes in serum adiponectin and leptin levels do not play an important role in the diagnosis or could act as as biomarkers for medullary thyroid cancer.

Environmental Genomics Related to Environmental Health Biomarker

  • Kim, Hyun-Mi;Kim, Dae-Seon;Chung, Young-Hee
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.2
    • /
    • pp.75-80
    • /
    • 2006
  • Biomarkers identify various stages and interactions on the pathway from exposure to disease. The three categories of biomarkers are those measuring susceptibility, exposure and effect. Susceptibility biomarkers are identifiable genetic variations affecting absorption, metabolism or response to environmental agents. Biomarkers of exposure indicate the amount of a foreign compound that is absorbed into the body. Biological measurements performed on human tissues are vastly expanding the capabilities of classical epidemiology, which has relied primarily on estimates of human exposure derived form chemical levels in the air, water, and other exposure routes. Biomarkers of exposure indicate the amount of a foreign compound that is absorbed into the body. Biological measurements performed on human tissues are vastly expanding the capabilities of classical epidemiology, which has relied primarily on estimates of human exposure derived form chemical levels in the air, water, and other exposure routes. The biomarker response is typical of chemical pollution by specific classes of compound, such as (i) heavy metals (mercury, cadmium, lead, zinc), responsible for the induction of metallothionein synthesis, and (ii) organochlorinated pollutants (PCBs, dioxins, DDT congeners) and polycyclic aromatic hydrocarbons (PAHs), which induce the mixed function oxygenase (MFO) involved in their bio transformations and elimination. Currently genomic researches are developed in human cDNA clone subarrays oriented toward the expression of genes involved in responses to xenobiotic metabolizing enzymes, cell cycle components, oncogenes, tumor suppressor genes, DNA repair genes, estrogen-responsive genes, oxidative stress genes, and genes known to be involved in apoptotic cell death. Several research laboratories in Korea for kicking off these Environmental Genomics were summarized.

Peptidoglycans Promotes Human Leukemic THP-1 Cell Apoptosis and Differentiation

  • Wang, Di;Xiao, Pei-Ling;Duan, Hua-Xin;Zhou, Ming;Liu, Jin;Li, Wei;Luo, Ke-Lin;Chen, Jian-Jun;Hu, Jin-Yue
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.12
    • /
    • pp.6409-6413
    • /
    • 2012
  • The innate immune system coordinates the inflammatory response to pathogens. To do so, its cells must discriminate self from non-self utilizing receptors that identify molecules synthesized exclusively by microbes. Toll-like receptors have a crucial role in the detection of microbial infection in mammals and insects. In mammals, they have evolved to recognize conserved products unique to microbial metabolism. These include lipopolysaccharide (LPS), lipotechoic acids, and peptidoglycans (PGN). We show here that TLRs, including TLR2, are expressed on the THP-1 human leukemia cell line. Activation of TLR2 signaling in THP-1 by PGN induces the synthesis of various soluble factors and proteins including interleukin-$1{\beta}$, interleukin-8 and TNF-${\alpha}$ and apoptosis of THP-1 with PGN dose and time dependence. Moreover, in this study we show that PGN induces apoptosis of THP-1 cells in a TNF-${\alpha}$-dependent manner. These findings indicate that TLR2 signaling results in a cascade leading to tumor apoptosis and differentiation, which may suggest new clinical prospects using TLR2 agonists as cytotoxic agents in certain cancers.

LKB1/AMPK/mTOR Signaling Pathway in Non-small-cell Lung Cancer

  • Han, Dong;Li, Shao-Jun;Zhu, Yan-Ting;Liu, Lu;Li, Man-Xiang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.7
    • /
    • pp.4033-4039
    • /
    • 2013
  • Links between cancer and metabolism have been suggested for a long time but compelling evidence for this hypothesis came from the recent molecular characterization of the LKB1/AMPK signaling pathway as a tumor suppressor axis. Besides the discovery of somatic mutations in the LKB1 gene in certain type of cancers, a critical emerging point was that the LKB1/AMPK axis remains generally functional and could be stimulated by pharmacological molecules such as metformin in cancer cells. In addition, AMPK plays a central role in the control of cell growth, proliferation and autophagy through the regulation of mTOR activity, which is consistently deregulated in cancer cells. Targeting of AMPK/mTOR is thus an attractive strategy in the development of therapeutic agents against non-small-cell lung cancer (NSCLC). In this review, the LKB1/AMPK/mTOR signaling pathway is described, highlighting its protective role, and opportunities for therapeutic intervention, and clinical trials in NSCLC.

Gene Expression in Gastric Adenocarcinomas (위선암에서의 유전자 발현)

  • Lee Jong Hoon;Choi Seok Ryeol;Han Sang Young;Hwang Tae Ho;Kim Min Chan;Jung Ghap Joong;Roh Mee Sook;Jeong Jin Sook
    • Journal of Gastric Cancer
    • /
    • v.2 no.4
    • /
    • pp.213-220
    • /
    • 2002
  • Purpose: The cDNA microarray provides a powerful alternative with an unprecedented view in monitoring geneexpression levels and leads to discoveries of regulatory pathways involved in complicated biological processes. Our aim is to explore the different gene-expression patterns in gastric adenocarcinomas. Materials and Methods: By using a cDNA microarray representing 4,600 cDNA clusters, we studied the expression profiling in 10 paired gastric adenocarcinoma samples and in adjacent noncancerous gastric tissues from the same patients. Alterations in the gene-expression levels were confirmed by Vsing Northern blots and reverse-transcription PCR (RT-PCR) in all of 4 randomly selected genes. Results: Genes those were expressed differently in cancer ous and noncancerous tissues were identified. 44 (of which 26 were known) and 92 (of which 43 were known) genes or cDNA were up- and down-regulated, respectively, in more than $80\%$ of the gastric adenocarcinoma samples. In cancer ous tissues, genes related to gene/protein expression, cellcycle regulation, and metabolism were mostly up-regulated whereas genes related to the oncogene/tumor suppressor gene, cell structure/motility, and immunology were mostly down-regulated. The semi-quantitative RT-PCR results for the four genes we tested were consistent with the array findings. Conclusions: These results provide not only a new molecular basis for understanding the biological properties of gastric adenocarcinomas but also a useful resource for future development of therapeutic targets and diagnostic markers for gastric adenocarcinomas.

  • PDF

Aldose Reductase Inhibitor Fidarestat as a Promising Drug Targeting Autophagy in Colorectal Carcinoma: a Pilot Study

  • Pandey, Saumya
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.12
    • /
    • pp.4981-4985
    • /
    • 2015
  • Background: Colorectal cancer (CRC) is a leading cause of morbidity and mortality worldwide. Targeting autophagic cell death is emerging as a novel strategy in cancer chemotherapy. Aldose reductase (AR) catalyzes the rate limiting step of the polyol pathway of glucose metabolism; besides reducing glucose to sorbitol, AR reduces lipid peroxidation-derived aldehydes and their glutathione conjugates. A complex interplay between autophagic cell death and/or survival may in turn govern tumor metastasis. This exploratory study aimed to investigate the potential role of AR inhibition using a novel inhibitor Fidarestat in the regulation of autophagy in CRC cells. Materials and Methods: For glucose depletion (GD), HT-29 and SW480 CRC cells were rinsed with glucose-free RPMI-1640, followed by incubation in GD medium +/- Fidarestat ($10{\mu}M$). Proteins were extracted by a RIPA-method followed by Western blotting ($35-50{\mu}g$ of protein; n=3). Results: Autophagic regulatory markers, primarily, microtubule associated protein light chain (LC) 3, autophagy-related gene (ATG) 5, ATG 7 and Beclin-1 were expressed in CRC cells; glyceraldehyde-3 phosphate dehydrogenase (GAPDH) was used as an internal reference. LC3 II (14 kDa) expression was relatively high compared to LC3A/B I levels in both CRC cell lines, suggesting occurrence of autophagy. Expression of non-autophagic markers, high mobility group box (HMG)-1 and Bcl-2, was comparatively low. Conclusions: GD +/- ARI induced autophagy in HT-29 and SW-480 cells, thereby implicating Fidarestat as a promising therapeutic agent for colorectal cancer; future studies with more potent ARIs are warranted to fully dissect the molecular regulatory networks for autophagy in colorectal carcinoma.