• 제목/요약/키워드: Tumor hypoxia

검색결과 120건 처리시간 0.025초

The Histone Methyltransferase Inhibitor BIX01294 Inhibits HIF-1α Stability and Angiogenesis

  • Oh, Su Young;Seok, Ji Yoon;Choi, Young Sun;Lee, Sung Hee;Bae, Jong-Sup;Lee, You Mie
    • Molecules and Cells
    • /
    • 제38권6호
    • /
    • pp.528-534
    • /
    • 2015
  • Hypoxia-inducible factor (HIF) is a key regulator of tumor growth and angiogenesis. Recent studies have shown that, BIX01294, a G9a histone methyltransferase (HMT)-specific inhibitor, induces apoptosis and inhibits the proliferation, migration, and invasion of cancer cells. However, not many studies have investigated whether inhibition of G9a HMT can modulate HIF-$1{\alpha}$ stability and angiogenesis. Here, we show that BIX01294 dose-dependently decreases levels of HIF-$1{\alpha}$ in HepG2 human hepatocellular carcinoma cells. The half-life of HIF-$1{\alpha}$, expression of proline hydroxylase 2 (PHD2), hydroxylated HIF-$1{\alpha}$ and von Hippel-Lindau protein (pVHL) under hypoxic conditions were decreased by BIX01294. The mRNA expression and secretion of vascular endothelial growth factor (VEGF) were also significantly reduced by BIX01294 under hypoxic conditions in HepG2 cells. BIX01294 remarkably decreased angiogenic activity induced by VEGF in vitro, ex vivo, and in vivo, as demonstrated by assays using human umbilical vein endothelial cells (HUVECs), mouse aortic rings, and chick chorioallantoic membranes (CAMs), respectively. Furthermore, BIX01294 suppressed VEGF-induced matrix metalloproteinase 2 (MMP2) activity and inhibited VEGF-induced phosphorylation of VEGF receptor 2 (VEGFR-2), focal adhesion kinase (FAK), and paxillin in HUVECs. In addition, BIX01294 inhibited VEGF-induced formation of actin cytoskeletal stress fibers. In conclusion, we demonstrated that BIX01294 inhibits HIF-$1{\alpha}$ stability and VEGF-induced angiogenesis through the VEGFR-2 signaling pathway and actin cytoskeletal remodeling, indicating a promising approach for developing novel therapeutics to stop tumor progression.

Negative impact of pretreatment anemia on local control after neoadjuvant chemoradiotherapy and surgery for rectal cancer

  • Lee, Hyebin;Park, Hee Chul;Park, Won;Choi, Doo Ho;Kim, Young-Il;Park, Young Suk;Park, Joon Oh;Chun, Ho-Kyung;Lee, Woo-Yong;Kim, Hee Cheol;Yun, Seong Hyeon;Cho, Yong Beom;Park, Yoon Ah
    • Radiation Oncology Journal
    • /
    • 제30권3호
    • /
    • pp.117-123
    • /
    • 2012
  • Purpose: Although anemia is considered to be a contributor to intra-tumoral hypoxia and tumor resistance to ionizing radiation in cancer patients, the impact of pretreatment anemia on local control after neoadjuvant concurrent chemoradiotherapy (NACRT) and surgery for rectal cancer remains unclear. Materials and Methods: We reviewed the records of 247 patients with locally advanced rectal cancer who were treated with NACRT followed by curative-intent surgery. Results: The patients with anemia before NACRT (36.0%, 89/247) achieved less pathologic complete response (pCR) than those without anemia (p = 0.012). The patients with pretreatment anemia had worse 3-year local control than those without pretreatment anemia (86.0% vs. 95.7%, p = 0.005). Multivariate analysis showed that pretreatment anemia (p = 0.035), pathologic tumor and nodal stage (p = 0.020 and 0.032, respectively) were independently significant factors for local control. Conclusion: Pretreatment anemia had negative impacts on pCR and local control among patients who underwent NACRT and surgery for rectal cancer. Strategies maintaining hemoglobin level within normal range could potentially be used to improve local control in rectal cancer patients.

Mechanism of the natural product moracin-O derived MO-460 and its targeting protein hnRNPA2B1 on HIF-1α inhibition

  • Soung, Nak-Kyun;Kim, Hye-Min;Asami, Yukihiro;Kim, Dong Hyun;Cho, Yangrae;Naik, Ravi;Jang, Yerin;Jang, Kusic;Han, Ho Jin;Ganipisetti, Srinivas Rao;Cha-Molstad, Hyunjoo;Hwang, Joonsung;Lee, Kyung Ho;Ko, Sung-Kyun;Jang, Jae-Hyuk;Ryoo, In-Ja;Kwon, Yong Tae;Lee, Kyung Sang;Osada, Hiroyuki;Lee, Kyeong;Kim, Bo Yeon;Ahn, Jong Seog
    • Experimental and Molecular Medicine
    • /
    • 제51권2호
    • /
    • pp.1.1-1.14
    • /
    • 2019
  • Hypoxia-inducible factor-$1{\alpha}$ ($HIF-1{\alpha}$) mediates tumor cell adaptation to hypoxic conditions and is a potentially important anticancer therapeutic target. We previously developed a method for synthesizing a benzofuran-based natural product, (R)-(-)-moracin-O, and obtained a novel potent analog, MO-460 that suppresses the accumulation of $HIF-1{\alpha}$ in Hep3B cells. However, the molecular target and underlying mechanism of action of MO-460 remained unclear. In the current study, we identified heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1) as a molecular target of MO-460. MO-460 inhibits the initiation of $HIF-1{\alpha}$ translation by binding to the C-terminal glycinerich domain of hnRNPA2B1 and inhibiting its subsequent binding to the 3'-untranslated region of $HIF-1{\alpha}$ mRNA. Moreover, MO-460 suppresses $HIF-1{\alpha}$ protein synthesis under hypoxic conditions and induces the accumulation of stress granules. The data provided here suggest that hnRNPA2B1 serves as a crucial molecular target in hypoxiainduced tumor survival and thus offer an avenue for the development of novel anticancer therapies.

Potential Risk of Choline Alfoscerate on Isoflurane-Induced Toxicity in Primary Human Astrocytes

  • Hyun Jung Lee;Hye Rim Cho;Minji Bang;Yeo Song Lee; Youn Jin Kim; Kyuha Chong
    • Journal of Korean Neurosurgical Society
    • /
    • 제67권4호
    • /
    • pp.418-430
    • /
    • 2024
  • Objective : Isoflurane, a widely used common inhalational anesthetic agent, can induce brain toxicity. The challenge lies in protecting neurologically compromised patients from neurotoxic anesthetics. Choline alfoscerate (L-α-Glycerophosphorylcholine, α-GPC) is recognized for its neuroprotective properties against oxidative stress and inflammation, but its optimal therapeutic window and indications are still under investigation. This study explores the impact of α-GPC on human astrocytes, the most abundant cells in the brain that protect against oxidative stress, under isoflurane exposure. Methods : This study was designed to examine changes in factors related to isoflurane-induced toxicity following α-GPC administration. Primary human astrocytes were pretreated with varying doses of α-GPC (ranging from 0.1 to 10.0 µM) for 24 hours prior to 2.5% isoflurane exposure. In vitro analysis of cell morphology, water-soluble tetrazolium salt-1 assay, quantitative real-time polymerase chain reaction, proteome profiler array, and transcriptome sequencing were conducted. Results : A significant morphological damage to human astrocytes was observed in the group that had been pretreated with 10.0 mM of α-GPC and exposed to 2.5% isoflurane. A decrease in cell viability was identified in the group pretreated with 10.0 µM of α-GPC and exposed to 2.5% isoflurane compared to the group exposed only to 2.5% isoflurane. Quantitative real-time polymerase chain reaction revealed that mRNA expression of heme-oxygenase 1 and hypoxia-inducible factor-1α, which were reduced by isoflurane, was further suppressed by 10.0 µM α-GPC pretreatment. The proteome profiler array demonstrated that α-GPC pretreatment influenced a variety of factors associated with apoptosis induced by oxidative stress. Additionally, transcriptome sequencing identified pathways significantly related to changes in isoflurane-induced toxicity caused by α-GPC pretreatment. Conclusion : The findings suggest that α-GPC pretreatment could potentially enhance the vulnerability of primary human astrocytes to isoflurane-induced toxicity by diminishing the expression of antioxidant factors, potentially leading to amplified cell damage.

원발성 심장 종양의 임상적 고찰 (Clinical Experiences for Primary Cardiac Tumors)

  • 유송현;임상현;유경종;박영환;장병철;강면식;홍유선
    • Journal of Chest Surgery
    • /
    • 제38권4호
    • /
    • pp.301-307
    • /
    • 2005
  • 원발성 심장 종양은 비교적 드문 질환으로 알려져 있다. 저자들은 수술을 시행받은 원발성 심장 종양의 결과에 대하여 살펴보았다. 대상 및 방법: 1980년 8월부터 2003년 12월까지 연세심장혈관 병원에서 원발성 심장 종양으로 수술을 시행 받은 86명의 환자들을 대상으로 병리적 진단에 따라 점액종, 점액종외의 양성 종양 및 악성 종양으로 나누어 고찰하였다. 환자들의 평균 연령은 $44.3\pm20.8$세였으며 남자가 29명$(33.7\%)$ 여자가 59명$(66.3\%)$이었다. 수술 후 병리적 진단으로는 양성 종양이 81예$(94.2\%)$였고 이 중 점액종이 70예$(78.7\%)$로 가장 많았으며 섬유종이 5예$(5.6\%)$, 횡문근종이 3예$(3.4\%)$였고, 악성 종양은 5예$(5.8\%)$였다 결과: 점액종은 양성 종양의 $86.4\%$였고 환자들의 평균 나이는 $50.4\pm15.4\;(7\~80)$세였다. 여자가 49명$(70\%)$이었으며 가장 흔한 증상은 호흡 곤란$(62.9\%)$이었다. 종양은 57예$(81.4\%)$에서 좌심방 중격에 위치하였고, 우심실 중격에 위치한 1예를 제외하고는 모두 완전 절제가 가능하였다. 수술 사망은 얼었으며 1예에서 수술 후 승모판막 부전이 발생하여 승모판막 대치술을 시행 받았다. 평균 추적 관찰 기간은 $109.3\pm71.8$개월이었고 이 기간 중 종양의 재발 소견을 보인 환자는 없었다. 점액종외의 양성 종양은 11예$(12.8\%)$로 섬유종이 5예, 횡문근종이 3예였다. 2예에서 진균성 심내막염 및 저산소증으로 인한 수술 사망이 있었으며 재수술은 없었다. 악성 종양은 5예$(5.8\%)$로 미분화성 육종이 2예, 횡문근육종 1예 등이었고, 수술 사망은 없었으나 추적이 가능했던 3예에서 합병증에 의한 사망이 있었다. 걸론: 점액종은 완전 절제 후 예후가 매우 좋았으며, 점액종외의 양성 종양은 증상 완화에 도움이 되었다. 악성종양은 종양과 관련된 증상을 완화시키기 위하여 수술이 필요하였으나 예후는 불량하였다.

스트레스-유도 열충격단백질 27(Heat Shock Protein 27)의 활성과 물리치료의 상관성 (The Activation of Stress-induced Heat Shock Protein 27 and the Relationship of Physical Therapy)

  • 김미선;이성호;김일현;황병용;김중환
    • The Journal of Korean Physical Therapy
    • /
    • 제20권1호
    • /
    • pp.57-65
    • /
    • 2008
  • Purpose: Heat shock proteins (HSPs) are a group of proteins that are activated when cells are exposed to a variety of environmental stresses, such as infection, inflammation, exposure to toxins, starvation, hypoxia, brain injury, or water deprivation. The activation of HSPs by environmental stress plays a key role in signal transduction, including cytoprotection, molecular chaperone, anti-apoptotic effect, and anti-aging effects. However, the precise mechanism for the action of small HSPs, such as HSP27 and mitogen-activated protein kinases (MAPKs: extracellular-regulated protein kinase 1/2 (ERK1/2), p38MAPK, stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), is not completely understood, particularly in application of cell stimulators including platelet-derived growth factor (PDGF), angiotensin II (AngII), tumor necrosis factor $\alpha$ (TNF$\alpha$), and $H_2O_2$. This study examined the relationship between stimulators-induced enzymatic activity of HSP27 and MAPKs from rat smooth and skeletal muscles. Methods: 2-dimensional electrophoresis (2DE) and matrix assisted laser desorption ionizationtime-of-flight/time-of-flight (MALDI-TOF/TOF) analysis were used to identify HSP27 from the intact vascular smooth and skeletal muscles. Three isoforms of HSP27 were detected on silver-stained gels of the whole protein extracts from the rat aortic smooth and skeletal muscle strips. Results: The expression of PDGF, AngII, TNF$\alpha$, and $H_2O_2$-induced activation of HSP27, p38MAPK, ERK1/2, and SAPK/JNK was higher in the smooth muscle cells than the control. SB203580 (30${\mu}$M), a p38MAPK inhibitor, increased the level of HSP27 phosphorylation induced by stimulators in smooth muscle cells. Furthermore, the age-related and starvation-induced activation of HSP27 was higher in skeletal muscle cells (L6 myoblast cell lines) and muscle strips than the control. Conclusion: These results suggest, in part, that the activity of HSP27 and MAPKs affect stressors, such as PDGF, AngII, TNF$\alpha$, $H_2O_2$, and starvation in rat smooth and skeletal muscles. However, more systemic research will be needed into physical therapy, including thermotherapy, electrotherapy, radiotherapy and others.

  • PDF

전립선 암세포에서 delphinidin에 의한 HIF-1α와 STAT3 억제를 통한 혈관내피 성장 인자 발현 저해 효과 (Delphinidin Suppresses Angiogenesis via the Inhibition of HIF-1α and STAT3 Expressions in PC3M Cells)

  • 김문현;김미현;박영자;장영채;박윤엽;송현욱
    • 한국식품과학회지
    • /
    • 제48권1호
    • /
    • pp.66-71
    • /
    • 2016
  • 델피니딘은 양전하를 뛰는 diphenylpropane의 polyphenolic ring 구조를 가진 주요한 안토시아닌 색소 중에 하나이다. 최근 연구에서 델피니딘은 항산화, 항염증 뿐만 아니라 항암 효능을 가진다고 보고되었다. 본 연구에서는 전립샘 암에서 종양의 성장과 신생혈관생성에 관련된 중요한 인자인 VEGF 발현에 대한 델피니딘의 억제 효과를 조사하였다. RT-PCR을 통해 델피니딘을 처리한 PC3M 전립샘 암세포 세포에서 EGF로 유도한 VEGF mRNA 발현 수준이 감소됨을 확인하였다. 또한 델피니딘은 VEGF의 전사인자인 HIF-$1{\alpha}$와 STAT3가 세포 핵으로 전위되는 것을 효과적으로 억제하였다. 한편 luciferase assay을 통해 HRE-promoter 활성을 확인해 본 결과, 델피니딘이 HIF-$1{\alpha}$의 전사 활성을 억제시켜 VEGF 발현을 감소시키는 것을 알 수 있었다. 그리고 델피니딘은 EGFR의 발현에는 영향을 미치지 않고, Akt, p70S6K, 4EBP1의 인산화를 특이적으로 억제하는 것으로 나타났다. 결론적으로 델피니딘이 HIF-$1{\alpha}$와 STAT3, VEGF 발현을 억제를 통하여 암세포 증식억제와 신생혈관형성을 억제하는 역할을 새롭게 확인하였다.

염분 섭취에 의한 시스플라틴 유도 급성 신장 손상의 촉진과 염증 반응과의 연관성 (Facilitation of cisplatin-induced acute kidney injury by high salt intake through increased inflammatory response)

  • 지선영;황보현;김민영;김다혜;박범수;박정현;이배진;이혜숙;최영현
    • 한국해양바이오학회지
    • /
    • 제13권2호
    • /
    • pp.86-93
    • /
    • 2021
  • A high salt diet contributes to kidney damage by causing hypoxia and oxidative stress. Recently, an increase in dietary salt has been reported to induce an inflammatory phenotype in immune cells, further contributing to kidney damage. However, studies on the exact mechanism and role of a high salt diet on the inflammatory response in the kidneys are still insufficient. In this study, a cisplatin-induced acute kidney injury model using C57BL/6 mice was used to analyze the effect of salt intake on kidney injury. Results showed that high salt administration aggravated kidney edema in mice induced by treatment with cisplatin. Moreover, the indicators of kidney and liver function impairment were significantly increased in the group cotreated with high salt compared with that treated with cisplatin alone. Furthermore, the exacerbation of kidney damage by high salt administration was also associated with a decrease in the number of cells in the immune regulatory system. Additionally, high salt administration further decreased renal perfusion functions along with increased cisplatin-induced damage to proximal tubules. This was accompanied by increased expression of T cell immunoglobulin, mucin domain 1 (a biomarker of kidney injury), and Bax (a pro-apoptotic factor). Moreover, cisplatin-induced expression of proinflammatory mediators and cytokines, including cyclooxygenase-2 and tumor necrosis factor-α in kidney tissue, was further increased by high salt intake. Therefore, these results indicate that the kidney's inflammatory response by high salt treatment can further promote kidney damage caused by various pathological factors.

Rg3-enriched red ginseng extracts enhance apoptosis in CoCl2-stimulated breast cancer cells by suppressing autophagy

  • Yun-Jeong Jeong;Mi-Hee Yu;Yuna Cho;Min-Young Jo;Kwon-Ho Song;Yung Hyun Choi;Taeg Kyu Kwon;Jong-Young Kwak;Young-Chae Chang
    • Journal of Ginseng Research
    • /
    • 제48권1호
    • /
    • pp.31-39
    • /
    • 2024
  • Background: Ginsenoside Rg3, a primary bioactive component of red ginseng, has anti-cancer effects. However, the effects of Rg3-enriched ginseng extract (Rg3RGE) on apoptosis and autophagy in breast cancer have not yet been investigated. In the present study, we explored the anti-tumor effects of Rg3RGE on breast cancer cells stimulated CoCl2, a mimetic of the chronic hypoxic response, and determined the operative mechanisms of action. Methods: The inhibitory mechanisms of Rg3RGE on breast cancer cells, such as apoptosis, autophagy and ROS levels, were detected both in vitro. To determine the anti-cancer effects of Rg3RGE in vivo, the cancer xenograft model was used. Results: Rg3RGE suppressed CoCl2-induced spheroid formation and cell viability in 3D culture of breast cancer cells. Rg3RGE promoted apoptosis by increasing cleaved caspase 3 and cleaved PARP and decreasing Bcl2 under the hypoxia mimetic conditions. Further, we identified that Rg3RGE promoted apoptosis by inhibiting lysosomal degradation of autophagosome contents in CoCl2-induced autophagy. We further identified that Rg3RGE-induced apoptotic cell death and autophagy inhibition was mediated by increased intracellular ROS levels. Similarly, in the in vivo xenograft model, Rg3RGE induced apoptosis and inhibited cell proliferation and autophagy. Conclusion: Rg3RGE-stimulated ROS production promotes apoptosis and inhibits protective autophagy under hypoxic conditions. Autophagosome accumulation is critical to the apoptotic effects of Rg3RGE. The in vivo findings also demonstrate that Rg3RGE inhibits breast cancer cell growth, suggesting that Rg3RGE has potential as potential as a putative breast cancer therapeutic.

Effect of Various Pathological Conditions on Nitric Oxide Level and L-Citrulline Uptake in Motor Neuron-Like (NSC-34) Cell Lines

  • Shashi Gautam;Sana Latif;Young-Sook Kang
    • Biomolecules & Therapeutics
    • /
    • 제32권1호
    • /
    • pp.154-161
    • /
    • 2024
  • Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disorder that causes progressive paralysis. L-Citrulline is a nonessential neutral amino acid produced by L-arginine via nitric oxide synthase (NOS). According to previous studies, the pathogenesis of ALS entails glutamate toxicity, oxidative stress, protein misfolding, and neurofilament disruption. In addition, L-citrulline prevents neuronal cell death in brain ischemia; therefore, we investigated the change in the transport of L-citrulline under various pathological conditions in a cell line model of ALS. We examined the uptake of [14C]L-citrulline in wild-type (hSOD1wt/WT) and mutant NSC-34/ SOD1G93A (MT) cell lines. The cell viability was determined via MTT assay. A transport study was performed to determine the uptake of [14C]L-citrulline. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis was performed to determine the expression levels of rat large neutral amino acid transported 1 (rLAT1) in ALS cell lines. Nitric oxide (NO) assay was performed using Griess reagent. L-Citrulline had a restorative effect on glutamate induced cell death, and increased [14C]L-citrulline uptake and mRNA levels of the large neutral amino acid transporter (LAT1) in the glutamate-treated ALS disease model (MT). NO levels increased significantly when MT cells were pretreated with glutamate for 24 h and restored by co-treatment with L-citrulline. Co-treatment of MT cells with L-arginine, an NO donor, increased NO levels. NSC-34 cells exposed to high glucose conditions showed a significant increase in [14C]L-citrulline uptake and LAT1 mRNA expression levels, which were restored to normal levels upon co-treatment with unlabeled L-citrulline. In contrast, exposure of the MT cell line to tumor necrosis factor alpha, lipopolysaccharides, and hypertonic condition decreased the uptake significantly which was restored to the normal level by co-treating with unlabeled L-citrulline. L-Citrulline can restore NO levels and cellular uptake in ALS-affected cells with glutamate cytotoxicity, pro-inflammatory cytokines, or other pathological states, suggesting that L-citrulline supplementation in ALS may play a key role in providing neuroprotection.