• Title/Summary/Keyword: Tubular Electrode

Search Result 29, Processing Time 0.023 seconds

Photocatalytic Cr(VI) Reduction with a Photoanode for Hydrogen Production (수소제조용 광전극을 활용한 Cr(VI) 환원처리에 관한 연구)

  • Shim, Eun-Jung;Park, Youn-Bong;Bae, Sang-Hyun;Yoon, Jae-Kyung;Joo, Hyun-Ku
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.4
    • /
    • pp.452-457
    • /
    • 2007
  • Titanium foil and mesh(anodized tubular $TiO_2$ electrode, ATTE) were anodized in a bath at $5^{\circ}C$ with 20V external bias applied, then annealed at different temperatures($450^{\circ}C{\sim}850^{\circ}C$) to obtain tubular $TiO_2$ on the Ti substrate. The prepared sample was used to investigate rate of hydrogen production as well as Cr(VI) reduction. The ATTEs annealed at relatively lower temperatures showed higher activity than those at relatively higher temperatures. In particular, the Cr(VI) reduction was pH-dependent. To improve photocatalytic Cr(VI) reduction with the ATTEs, two configurations, fixing foil type and rotating mesh type, were also compared. As a result, the rotating mesh type was much more effective for Cr(VI) reaction than the former due to the more efficient use of the light. In the rotating type reactor, as the rotating speed increased, the rate of the Cr(VI) reduction was getting faster.

In-Situ Fabrication of Micro-channeled Multi Tubular Solid Oxide Fuel Cell using Multi-pass Extrusion Process (다중압출 공정을 이용한 마이크로 채널 다중 원통형 고체산화물 연료전지의 in-situ 제조)

  • Byun, Ki-Cheon;Rahman, AHM Esfakur;Kim, Jong-Hee;Lee, Byong-Taek
    • Korean Journal of Materials Research
    • /
    • v.17 no.6
    • /
    • pp.313-317
    • /
    • 2007
  • In-situ micro-channeled multi tubular solid oxide fuel cell(SOFC) was fabricated using multi-pass extrusion process with out side diameter of 2.7 mm and active length of 5 mm that contained 61 individual cells. Cell materials used in this work were NiO-YSZ (50 : 50 vol.%), 8 mol% yttria-stabilized zirconia(8YSZ), $La_{0.8}Sr_{0.2}MnO_3(LSM)$ as anode, electrolyte, and cathode, respectively. The arrangement of each electrode and electrolyte layer in green bodies showed uniformity and integrity after extrusion and sintering. The XRD analysis confirmed that no reaction phases appeared and the microstructure of the electrolyte was fairly dense (relative density > 96%) after sintering.

Development of Tubular Solid Oxide Fuel Cells with Advanced Anode Current Collection (연료극 집전체 최적화를 적용한 원통형 고체산화물 연료전지 단전지 성능 향상)

  • Kim, Wanje;Lee, Seungbok;Song, Rakhyun;Park, Seokjoo;Lim, Takhyoung;Lee, Jongwon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.6
    • /
    • pp.480-486
    • /
    • 2013
  • In this study, tubular SOFC unit cell with advanced anode current collector was fabricated to improve the cell performance. First, we prepared two types of single cells having the same manufacture processes such as the same electrolyte, electrode coating condition and sintering processes. And then to compare the developed single cell performance with conventional cells, we changed the anode current collecting methods. From the impedance analysis and I-V curve analysis, the cell performance of advanced cell is much higher than that of conventional cell.

ED-Drilling of $MoSi_2$-matrix Composites ($MoSi_2$ 기지 복합재의 ED-Drilling)

  • 김창호;윤한기
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.886-889
    • /
    • 2000
  • This paper describes the machining characteristics of the MoSi$_2$-based composites by electric discharge drilling with various tubular electrodes. MoSi$_2$-based composites has been developed in new materials for jet engine of supersonic-speed airplanes and gas turbine for high- temperature generator. By combining a nonconducting ceramics with more conducting ceramic it was possible to raise the electrical conductivity. In drilling by EDM, the dielectric flushed down the interior of the rotating tube electrode, in order to facilitate the removal of machining debris from the hole. Various metal-coated tubular electrodes of which core are copper and brass are used to know the effect of coating material on machinability of ED drilling.

  • PDF

Gas-Sensing Membrane Electrodes for the Determination of Dissolved Gases (Ⅳ). Continuous-Automated Determination of Sulfide Ion Using Tubular PVC Membrane Type pH Electrode (용해기체 분석용 기체감응막 이온선택성 전극 (제 4 보) 관형 PVC막 pH전극을 이용한 황화이온의 연속 · 자동화 정량)

  • Lee Heung Lark;Bae Zun Ung;Oh Sang-Hyub
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.5
    • /
    • pp.638-643
    • /
    • 1992
  • The analytical response properties of two types of continuous flow-through electrode system as fulfide ion detectors are examined and directly compared their reponse characteristics under the optimal conditions. In both detection systems, observed peak potentials are logarithmically related to the sulfide ion concentration and at least twenty samples per hour can be determined. In the pH electrode method, the pH of the flowing recipient stream leaving the dialyzer was monitored. The designed system involves the use of continuous flow gas dialyzer in conjunction with the tubular polymer membrane electrode. In this method, optimal experimental conditions are recipient of mixture of $5.0 {\times} 10^{-5} M NaOH + 5.0 {\times} 10^{-3} M$ NaCl and diluent of 0.10 M $H_2SO_4$, and all flow rates of recipient stream, diluent stream, and sample are 1.0 ml/min. In the sulfide ion electrode method, a commercially available sulfide ion-selective electrode was used to detect sulfide ion in the flow-through cell. The optimal flow rates of sulfide anti-oxidant buffer (3.5 g ascorbic acid and 7.6 g $Na_2EDTA$ dissolved in 1.0 M NaOH solution 1 l) and sample were 1.4 ml/min and 1.0 ml/min, respectively.

  • PDF

Disposable Power Generator with Tubular PEMFC and H2 Generator for the Power Source of Microfluidic Devices (튜브형 고분자전해질 연료전지와 일회용 수소발생소자를 결합한 미세유체소자용 전원공급소자)

  • Kim, Kwang-Ho;Seo, Young-Ho;Kim, Byeong-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.7
    • /
    • pp.829-835
    • /
    • 2010
  • This paper presents a disposable power generator for microfluidic devices; the power generator has a tubular PEMFC and a $H_2$ generator. The tubular PEMFC has a tubular MEA (diameter: 1.52 mm) that is supported by a spiral wire electrode. The $H_2$ generator supplied $H_2$ to the tubular PEMFC; $H_2$ was generated via the reaction of Al foil (27 mg) and 5 M NaOH (0.12 ml). The open circuit voltage and power density of a unit cell of the tubular PEMFC were 0.81 V and $16.4\;mW/cm^2$ (0.35 V), respectively. The $H_2$ generator generated 11.6 ml $H_2$ for 15min. The power generator was continuously operated for 15 min at 0.64 mW (0.71 V) and for 10 min at 1.06 mW (0.46 V). We experimentally verified that it is feasible to use the proposed power generator as a power source for microfluidic devices; in the experiment, an LED (2.5 mW; 1.8 V) was lit for 10 min by using three serially connected TPEMFCs and one $H_2$ generator.

Hydrogen Production from Anodized Tubular $TiO_2$ Electrode and Immobilized cross-linked P. furiosus (양극산화 $TiO_2$ 전극과 cross-linked P. furiosus 활용 물분해 수조제조)

  • Yoon, Jae-Kyung;Park, Min-Sung;Her, Ah-Young;Shim, Eun-Jung;Joo, Hyun-Ku
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.749-752
    • /
    • 2009
  • Anodized tubular titania ($TiO_2$) electrodes (ATTEs) are prepared and used as both the photoanode and the cathode substrate in a photoelectrochemical system designed to split water into hydrogen with the assistance of an enzyme and an external bias (solar cell). In particular, the ATTE used as the cathode substrate for the immobilization of the enzyme is prepared by two methods; adsorption and crosslinking. Results show that the optimized amount of enzyme is 10.98 units for the slurried enzyme, 3.66 units for the adsorbed one and 7.32 units for the crosslinked one, and the corresponding hydrogen evolution rates are 33.04, 148.58, and 234.88 umol/hr, respectively. The immobilized enzyme, specifically the chemically crosslinked one, seems to be much superior to the slurried enzyme, due to the enhanced charge-transfer process that is caused by the lower electrical resistance between the enzyme and the ATTE. This results in a greater number of accepted electrons and a larger amount of enzymes able to deal with the electrons.

  • PDF

Tubular Type Direct Methanol Fuel Cell for in situ NMR Diagnosis (In Situ NMR 진단용 원통형 직접 메탄올 연료전지)

  • Joh, Han-Ik;Um, Myung-Sup;Han, Kee-Sung;Han, Oc-Hee;Ha, Heung-Yong;Kim, Soo-Kil
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.4
    • /
    • pp.329-334
    • /
    • 2009
  • This study is to develop a fuel cell system applicable to an in situ NMR (Nuclear magnetic resonance) diagnosis. The in situ NMR can be used in real time monitoring of various reactions occurring in the fuel cell, such as oxidation of fuel, reduction of oxygen, transport phenomena, and component degradation. The fuel cell for this purpose is, however, to be operated in a specifically designed tubular shape toroid cavity detector (TCD), which constrains the fuel cell to have a tubular shape. This may cause difficulties in effective mass transport of reactants/products and uniform distribution of assembly pressure. Therefore, a new flow field designed in a particular way is necessary to enhance the mass transport in the tubular fuel cell. In this study, a tubular-shaped close-type flow field made of non-magnetic material is developed. With this flow field, oxygen is effectively delivered to the cathode surface and the produced water is readily removed from the membrane-electrode assembly to prevent flooding. The resulting DMFC (direct methanol fuel cell) outperforms the open-type flow field and exhibits $36\;mW/cm^2$ even at room temperature.

Preparation of Ni Nanoparticles-TiO2 Nanotube Arrays Composite and Its Application for Electrochemical Capacitor

  • He, Huichao;Zhang, Yunhuai;Xiao, Peng;Yang, Yannan;Lou, Qing;Yang, Fei
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1613-1616
    • /
    • 2012
  • Ni nanoparticles-$TiO_2$ nanotube arrays (Ni/$TiO_2NTs$) composites were prepared by pulsed electrodeposition method and subsequently characterized by means of field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX). The FESEM results showed that highly dispersed Ni nanoparticles were not only loaded on the top of the $TiO_2NTs$ but also within the tubular structure, and the particle size of Ni prepared at different current amplitude (100, 200 and 300 $mA{\cdot}cm^{-2}$) was in the range of 15 to 70 nm. The electrochemical studies indicated that Ni nanoparticles loaded on the highly ordered $TiO_2NTs$ are readily accessible for electrochemical reactions, which improve the efficiency of the Ni nanoparticles and $TiO_2NTs$. A maximum specific capacitance (27.3 $mF.cm^{-2}$) was obtained on the Ni/$TiO_2NTs$ composite electrode that prepared at a current of 200 $mA.cm^{-2}$, and the electrode also exhibited excellent electrochemical stability.

Electrochemical Energy Storage of Milled Carbon Nanofiber (탄소나노섬유의 밀링에 따른 전기화학적 에너지 저장 특성)

  • Lee, Hye-Min;Jeon, Hyeon;Choi, Weon-Kyung;Cho, Tae-Hwan
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.4
    • /
    • pp.527-533
    • /
    • 2011
  • CNFs had been well addressed due to numerous promising applications in science and technology. Besides the same physicochemical properties of ordinary carbon materials such as active carbons and carbon black, they exhibit specific, e.g., tubular or fibrous structures, a large surface area, high electrical conductivity stability, as well as extremely high mechanical strengh and modulus, which make them a superior material for electrochemical capacitors. In this study, CNFs were pretreated by mechanical milling with different time in mortar and pestle. The milled CNFs were used as active material of electrode whose electrochemical property was tested to find physicochemical characterization variation. CNF electrode milled for 5 min has the highest electric capacitance. XPS spectrum were employed to explore changes in functional group induced from mechanical milling. Crystal size was calculated to analyze change of peak from different milling time by XRD. The CNF milled for 5 min has the largest crystal size and the highest electric capacitance.