• Title/Summary/Keyword: Tubes

Search Result 3,118, Processing Time 0.031 seconds

Characteristics of GRP tube using Composite Hollow Bushing by Filament Winding (Filament Winding에 의한 Composite Hollow Bushing용 GRP tube의 특성)

  • Cho, Han-Goo;Kang, Hyung-Kyung;Yoo, Dea-Hoon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.378-379
    • /
    • 2008
  • Recently, composite hollow bushings have been increasingly employed mainly from the various characteristics. Composite bushings are superior to porcelain bushings in several respects, including lighter weight, better anti-pollution and anti-explosion properties, and easer manufacturing. Filament wound GRP tubes which have various winding angle were manufactured by using a filament winding machine. This paper will show some design issues and winding condition for composite bushing. And, results show that the winding condition of composite GRP tubes can be used to improved their bending strength and pressure, For bending and pressure tested, tubes with the hybrid winding pattern show higher strength than those of unit winding pattern. Also, the influence of absorption was evaluated through such as measurement of the dye penetration test and water diffusion test, also aspects of surface state using scanning electron microscopy.

  • PDF

A numerical study of 3-D flows in spiral tubes with square cross-section (Spiral Tube 내에서의 3차원 유동 해석)

  • KIM Seongwon;HUR Nahmkeon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.11a
    • /
    • pp.62-69
    • /
    • 1998
  • Spiral tube heat exchangers can find numerous applications in many engineering field. Flow in spital tubes is interest to engineers due to occurrence of secondary flow which enhances the cross-sectional mixing and the heat transfer rate. In the present study, an incompressible viscous 3-D flow in spiral tubes with rectangular cross-section of various torsion rate and Reynolds number is studied by using a finite volume method. It is shown that the axial velocity profile is affected by the secondary flow motion. Because there is some difference from correlation proposed by Hur et al., a lot of analysis and arrangement of experimental results are needed. This study showed the results of variation of hydrodynamic entry length for torsion and Re numbers.

  • PDF

Measurement of Wall Shear Stress Using Preston Tubes (프레스톤 튜브를 이용한 벽면전단응력 측정에 관한 실험적 연구)

  • 강신형;윤민수;전우평
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1873-1880
    • /
    • 1994
  • Fully developed turbulent flow in a circular pipe and laminar boundary layer on a flat plate were measured to develop a measuring technique of the wall sheat stress using Preston tubes. New empirical formulas to extimate displacement factor of Preston tube obtained through the present study. The displacement factor for turbulent flow was considerably different from that for the laminar flow. Measured wall shear stress was not pretty dependent on the displacement factor for Preston tubes in the inertia sublayer of turbulent boundary layer, however was considerably affected in the laminar boundary layer. Measuring error of skin friction using the CPM technique was 3% for turbulent and 5% for thin laminar boundary layers.

Heat Transfer and Pressure Drop Characteristics for Various Tube Geometries in Modular Tube Bundle Heat Exchanger (모듈형 관군 열교환기에서의 관 형상에 따른 열전달 및 압력강하 특성에 관한 연구)

  • Yoon, Joon-Shik;Park, Byung-Kyu;Kim, Cham-Jung
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.105-111
    • /
    • 2000
  • A numerical study has been performed to obtain the heat transfer and pressure drop characteristics for shell-and-tube heat exchanger with various shapes of tubes. The Tubes have variation of Aspect Ratio, Pitch and Rotation. Results are presented as plots of Colburn j factor and friction factor f against Aspect Ratio, Pitch and Rotation. As Aspect Ratio increases, j factor and f factor decreases. As Pitch increases, j factor decreases. j/f have optimized Pitch for each Aspect Ratio. Accordingly, there is fitness of Aspect Ratio and Pitch fur most effective cases. The Rotation of tubes are of no meaning for both heat transfer and pressure drop.

  • PDF

A Method to Predict Wear Depth Using Inversely Calculated Wear Constants from Known Wear Depth and Time (측정된 마모 깊이와 시간에 의해 역으로 계산된 마모상수를 이용한 마모 깊이 예측)

  • Lee, Yong-Son;Kim, Tae-Soon;Park, Chi-Yong;Boo, Myung-Hwan;Lee, Chang-Sub
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.178-188
    • /
    • 2003
  • The wear of steam generator tubes is due to the vibration occurred between tubes and tube supporters. To predict the future wear depth, the wear constants of the impact and the sliding model is used. The wear constants, 3C/2 and K/3H, are found inversely from known wear depth and time. Using these constants, the future wear depths are found from two bodies that deform the elliptical shape. The results are compared with the measured wear depth of steam generator tubes in a nuclear power plant. The results show that the predicted wear depth envelopes the measured wear depth.

  • PDF

Fretting Wear Characteristics of Inconel 690 Tubes in Room Temperature (인코넬 690 튜브의 상온 프레팅 마멸 특성에 대한 연구)

  • Chung, Il-Sup;Lee, Myung-Ho;Chai, Young-Suck
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.4
    • /
    • pp.329-336
    • /
    • 2009
  • A fretting wear test rig for cross contacting tube specimens, which employs a piezoelectric actuator, has been developed. Along with the simple loading scheme using dead weights, the rig is very simple to be used also. The accuracy was found acceptable. Inconel 690 tubes were tested in room temperature and ambient condition. Normal load and sliding amplitude range up to 35N and $100{\mu}m$, respectively. The sizes of wear scar and the wear volumes were measured, and wear coefficients have been calculated based on those. A study on the fretting wear mechanism of the tubes has been attempted via microscopic observation. Rugged wear surfaces are induced by the separation and adhesion of particles and formation and subsequent fracture of surface layers. Lapped specimens were also tested and abrasive wear seems to be playing a dominant role.

Axial crush and energy absorption characteristics of Aluminum/GERP hybrid square tube (알루미늄/GFRP 혼성 사각튜브의 정적 압축 붕괴 및 에너지 흡수 특성)

  • 김구현;이정주
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.168-171
    • /
    • 1999
  • For the axial crushing tests of various shape of tubes, it was reported that composite tubes need trigger mechanism to avoid brittle failure. In this study, static axial crush tests were performed with the new aluminum/GFRP hybrid tubes. Glass/Epoxy prepregs were wrapped around aluminum tube and co-cured. The failure of hybrid tube was stable and progressive without trigger mechanism, and specific energy absorption was increased to maximum 34% in comparison with aluminum tube. Effective energy absorption is possible for inner aluminum tube because wrapped composite tube constrain the deflection of aluminum tube and reduce the folding length. The failure of hybrid composite tube was stable without trigger mechanism because inner aluminum tube could play the role of crack initiator and controller. Aluminum/Glass-Epoxy hybrid tube is suitable for the vehicle front structure due to effective energy absorption capability, easy production, and simple application for RTM process.

  • PDF

Defect Assessment for Integrity Evaluation of CANDU Pressure Tubes (CANDU 압력관 건전성평가를 위한 결함해석)

  • 김영진;석창성;박윤원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.731-740
    • /
    • 1995
  • The objective of this paper is to develop defect assessment technology for integrity evaluation of CANDU pressure tubes. In fracture mechanics analysis, three-dimensional and two-dimensional (line-spring model) finite element analyses were performed to obtain the stress intensity factor for axial and circumferential surface cracks. In leak before break (LBB) analysis, heat transfer analyses for through-wall cracks were performed by considering the cooling effect and the LBB application time was computed. It was shown that the analytical results obtained in this study provide less-conservative but accurate solution for defect assessment of CANDU pressure tubes.

Study on Heat Transfer Characteristics of Evaporator with Horizontal Small Diameter Tubes using Natural Refrigerant Propane (자연냉매 프로판을 이용한 수평세관 증발기의 열전달 특성에 관한 연구)

  • Ku, H.K.
    • Journal of Power System Engineering
    • /
    • v.14 no.4
    • /
    • pp.11-16
    • /
    • 2010
  • The evaporation heat transfer characteristics of propane(R-290) in horizontal small diameter tubes were investigated experimentally. The test tubes have inner diameters of 1 mm and 4 mm. Local heat transfer coefficients were measured at heat fluxes of 12, $24\;kW/m^2$, mass fluxes of 150, $300\;kg/m^2s$, and evaporation temperature of $15^{\circ}C$. The experimental results showed that the evaporation heat transfer coefficient of R-290 has an effect on heat flux, mass flux, tube diameter, and vapor quality. The evaporation heat transfer of R-290 has an influenced on nucleate boiling at low quality and convective boiling at high quality. The evaporation heat transfer coefficient of R-290 increases with decreasing inner tube diameter. And the evaporation heat transfer coefficient of R-290 is about 1~3 times higher than that of R-134a.

Numerical Analysis of Nonlinear Acoustic Characteristics in Axisymmetric Resonant Tubes for Sonic Compressors (음향 압축기 설계를 위한 축대칭 공명튜브 내부음장의 수치해석 및 특성연구)

  • 전영두;김양한
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.1009-1014
    • /
    • 2001
  • A numerical investigation on nonlinear oscillations of gas in an axisymmetric resonant tube is presented. When a tube is oscillated at a resonant frequency, acoustic variables such as density, velocity, and pressure undergo very large perturbation, often described as nonlinear oscillation. In order to analyze these phenomena, axisymmetric 2-D nonlinear governing equations have been derived and solved numerically. Numerical simulations were accomplished for cylindrical, conical, and 1/2 cosine-shape tubes, which have same volume and length. For conical and 1/2 cosine-shape tubes, very large variation of pressures can be induced without shock formation except the cylindrical tube. In addition, the results well agree to those of 1-D simple model analysis.

  • PDF