• Title/Summary/Keyword: Tube-sheet Thickness

Search Result 36, Processing Time 0.021 seconds

Development of Design-Program of Fixed Type Tube-Sheet for Heat Exchanger (열교환기용 고정형 튜브시트의 설계프로그램 개발)

  • Kong J.S.;Lee K.J.;Han J.Y.;Cho J.R.;Bae W.B.
    • Transactions of Materials Processing
    • /
    • v.15 no.3 s.84
    • /
    • pp.206-212
    • /
    • 2006
  • Design programs of tube-sheet for heat exchanger based on the related engineering society codes have been widely used. But it is not easy fer beginners to use the design programs. So we need to develop an easy program for design of tube-sheet for heat exchanger. This paper describes a developed design-program of tube-sheet fur heat exchanger. The developed program was coded on boiler theory and pressure vessel codes, provided by TEMA(Tubular Exchanger Manufactures Association) and ASME(American Society of Mechanical Engineers). Visual Basic, which is convenient for beginners to deal with, was used in the programming. Also a finite element analysis of tube-sheet for heat exchanger was carried to verify this developed program by using a commercial software, ANSYS. In the finite element analysis, tube and tube-sheet of heat exchanger were substituted by solid plate having equivalent properties for convenience of calculation. The thickness of tube-sheet obtained by the developed design-program was in good agreement with that of tube-sheet by FEA.

Investigation of Stresses Due to Various Parameters of Shell and Tube Oil Cooler (다관 원통식 오일 냉각기의 다양한 파라미터에 따른 스트레스 고찰)

  • Han, S.K.
    • Journal of Power System Engineering
    • /
    • v.13 no.1
    • /
    • pp.5-12
    • /
    • 2009
  • The present work aims to estimate channel, shell, tube and tube sheet stresses of shell and tube oil cooler stemmed from various parameters. These parameters involve size, thickness and dimension of shell and tube oil cooler, including fluid temperature. The main purpose of the present work is to ensure safety of design products and also develop new products rapidly. For stress evaluation of oil coolers, first of all, the maximum pressure on the shell-side and on the tube side is fixed with 3.1MPa and 1.5MPa, respectively. Secondly, the pressure on each side varies from 2MPa to 3.1MPa on the shell side and tram 0.6MPa to 2MPa on the tube side. Various parameters under these conditions are employed to estimate design stresses on each side of oil cooler. These basic information related to stresses will be useful for a designer or manufacturer of an oil cooler.

  • PDF

Development of Flow Forming Process for Hollow Shaped Parts from Seamless Steel Tube (유동성형을 이용한 중공형 부품 제조공정 개발)

  • Kwon, Y.N.;Kim, S.W.;Kim, B.J.;Park, E.S.;Cha, D.J.
    • Transactions of Materials Processing
    • /
    • v.20 no.8
    • /
    • pp.611-618
    • /
    • 2011
  • Flow forming is an incremental forming process in which rollers are used to form cylindrical parts with repeated turning of both roller and starting material. Both sheet and tube can be used as the starting material. The process is highly useful for producing hollow shaped parts from a tube, with the benefit of the average strain in the final shape being significantly lower than that from a sheet material. In the present study, the flow forming process was studied and optimized for producing a hollow shaped part from seamless steel tube by both experiment and numerical analysis. Upon considering the difficulty of forming seamless steel sheet, the thickness reduction was distributed over several tool paths. In the end, an optimum process condition was attained, and the experiment verified the simulation results.

Analysis on the Tube and Welded Blank Hydroforming of Automotive Engine Mount Bracket (자동차 엔진마운트 브래킷의 관재 및 용접판재 유압성형에 대한 성형해석)

  • 김헌영;신용승;홍춘기;전병희;오수익
    • Transactions of Materials Processing
    • /
    • v.10 no.1
    • /
    • pp.3-14
    • /
    • 2001
  • Hydroforming is the technology using hydraulic pressure and forming sheet or tube metals to desired shape in a die cavity. lt can be characterized as tube hydroforming and sheet hydroforming depending on the shape of used blank. Due to its prcess-related benefits, this production technology has been remarkably noticed for great potential for feasible applications and recently gained great attraction from many industrials including automotive and non-automotive. This Paper analyzed the tube and the welded blank hydroforming process and compared formability of the processes for automotive engine mount bracket. The mathematical analysis was performed by using the dynamic explicit finite element code, PAM-STAMP. In tube hydroforming, bending, springback, and forming analysis were carried out and the effect of mandrel and axial feeding were examined. In welded blank hydroforming, pressure curve history is determined and the results of forming analysis were evaluated by the comparison of experimental results in the aspects of deformed shape and thickness distribution.

  • PDF

Production of Laser Welded Tube for Automobile Bumper Beam from 60kgf/$\textrm{mm}^2$Grade Steel Sheet (60kgf/$\textrm{mm}^2$급 자동차 범퍼빔용 레이저 용접 튜브 제조기술 및 장치연구)

  • Seo, Jung;Lee, Je-Hoon;Kim, Jong-Soo;Kim, Jung-O;Kang, Hee-Sin;Lee, Moon-Yong;Jung, Byung-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.7
    • /
    • pp.136-144
    • /
    • 2004
  • Optimal process and system to produce the laser welded tube for one body formed bumper beam are studied. The calculated size of tube is a thickness of 1.4mm, diameter of 105.4mm and length of 2000mm. The tube is shaped from a cold rolled high strength steel sheet(tensile strength: 60kgf/$\textrm{mm}^2$ grade). Two roll bending method is the optimal tube shaping process compared to UO-bending, bending on press brake, multi-step continuous roll forming and 3 roll bending methods. Weld quality monitoring and seam tracking along the butt-joint lengthwise to the tube axis are also studied. The longitudinal butt-joint is welded by the $CO_2$ laser welding system equipped with a seam tracker and plasma sensor. The constructed $CO_2$laser tube welding system can be used for the precision seam tracking and the real-time monitoring of weld quality. Finally, the obtained laser welded tube can be used for one-body formed automobile bumper beam.

A study on manufacturing of laser welded tube from 60kgf/$mm^2$Grade Steel Sheet for one-body forming (60kgf/$mm^2$급 일체화 성형용 레이저 용접 튜브 제조에 관한 연구)

  • Seo, Jung;Lee, Je-Hoon;Kim, Jung-Oh;Kang, Hee-Sin;Lee, Mun-Yong;Jung, Byung-Hoon
    • Proceedings of the KWS Conference
    • /
    • 2003.11a
    • /
    • pp.18-20
    • /
    • 2003
  • Optimal processing and system to produce the laser welded tube for one body formed bumper beam are studied. The calculated size of tube is a thickness of 1.4mm, diameter of 105.4mm and length of 2000mm. The tube is shaped from cool rolled high strength steel sheet(tensile strength: 60kgf/$\textrm{mm}^2$ grade). Two roll bending method is the optimal tube shaping process compared to UO-bending, bending on press brake, multi-step continuous roll forming and 3 roll bending methods. Weld quality monitoring and seam tracking along the butt-joint lengthwise to the tube axis are also studied. The longitudinal butt-joint is welded by the $CO_2$ laser welding system equipped with a seam tracker and plasma sensor. The constructed $CO_2$ laser tube welding system can be used for the precision seam tracking and the real-time monitoring of weld quality. Finally, the obtained laser welded tube can be used for one-body formed automobile bumper beam.

  • PDF

Preform Designin Tube by Using the Hydroforming (Hydroforming을 이용한 Tube 의 예비 가공형 설계)

  • 이한남
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.39-44
    • /
    • 1999
  • Hydroforming is a forming process enabling circular metal tubes to be produced in complex cross sections along curved axial paths With the availability of advanced machine design and control They offer advantages over stamped sheet metal in lower tooling cost and structural mass The technology is relatively new so that there is no large knowledge base to assist the fundamentals of tube hydroforming technology. The purpose of this paper is found that adaptive bending condition and contact condition for bended part has uniform thickness distribution.

  • PDF

Nonlinear finite element analysis of Concrete Filled Carbon Tube Columns Using Plasticity Theory (축하중을 받는 콘크리트 충전 탄소섬유튜브 기둥의 소성 이론을 적용한 비선형 유한요소해석)

  • Kim, Heecheul;Seo, Sang Hoon;Lee, Young Hak
    • KIEAE Journal
    • /
    • v.7 no.6
    • /
    • pp.119-126
    • /
    • 2007
  • In the field of composite structures, the use of carbon tube for the confinement of concrete has been arisen since 1990's. However, experimental and analytical studies were limited to those of reinforced concrete and concrete filled steel tube. The carbon tube provides excellent confinement capabilities for concrete cores, enhancing compressive strength and ductility of concrete significantly. The carbon tube has high tensile strength, light weight, corrosion immunity and high fatigue strength properties. Since carbon fiber is an anisotropic material, carbon tube could be optimized by adjusting the fiber orientation, thickness and the number of different layers. In this study, both experimental and analytical studies of axial and lateral behavior of full-scale CFCT (Concrete Filled Carbon Tube) columns subjected to monotonic axial load were carried out using Drucker-Prager theory. And, based on comparison results between experiment results and analytical results, k factor estimation was proposed for effective analysis.

Evaluation of Tungsten Blended Filament Shields Made by 3D Printer in Radiography (일반촬영분야에서의 3D 프린터로 제작한 텅스텐 혼합 필라멘트 차폐체의 성능평가)

  • Yoon, Joon;Yoon, Myenog-Seong
    • Journal of radiological science and technology
    • /
    • v.44 no.6
    • /
    • pp.615-621
    • /
    • 2021
  • In the medical field, radiation provides information for the diagnosis and treatment of diseases. As the use of radiation increases and the risk of exposure increases, interest in radiation protection is also rapidly increasing. Lead shielding material is mainly used, which has a risk of lead poisoning and absorption into the body. Tungsten mixed filament shielding sheets were fabricated with a size of 70 × 70 mm and a thickness of 1, 2, and 4 mm by using a 3D printer. In the general shooting experiment, the thickness of the shielding sheet is 1 ~ 5mm, the tube voltage is 60, 80, 100, 120 kVp and the tube current is 20, 40 mAs. In general photography, Tungsten showed better shielding rate compared to Brass, Copper, and Lead protective tools under all irradiation conditions, and in particular, Tungsten 5 mm showed 100% shielding rate. The 3D-printed tungsten mixed filament shielding is expected to be used as a new shield that can replace the existing lead protection tools as it shows a better shielding rate than the existing lead protection tools in Radiography.

Development of Rubber Sleeve for Reduction of End-mark in Cold Rolled Steel Sheet (고급강판용 엔드마크 감소를 위한 고무 슬리브의 개발)

  • Kim, Soon-Kyung;Kim, Dong-Keon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.1
    • /
    • pp.29-35
    • /
    • 2015
  • In this study, a FEM analysis is undertaken of a rubber sleeve which is mounted onto a spreading mandrel so as to avoid marking the first wrappings of coils (known as the 'end-mark'), as occasionally occurs when a concentrated load is placed on the edge of a steel sheet, significantly reducing its quality. A commercial numerical package, ANSYS, was utilized to analyze the structural behavior of the rubber sleeve. In general, the strain of the sleeve increases as the thickness of the rubber layer (H) covering the tubes increases, thus also increasing the surface of the sleeve for a constant boundary condition, and decreasing the pitch (P) between each tube, resulting in an increase in the strain on the surface of the sleeve for all rubber thickness conditions tested here. In a comparison of two different materials, rubber and urethane, when H=3 mm and P=1.1D, the maximum total deformations in these cases are 0.12669 mm and 0.086623 mm, respectively.