• Title/Summary/Keyword: Tube-furnace

Search Result 206, Processing Time 0.024 seconds

Gasification Kinetics of an Indonesian Subbituminous Coal Char Reactivity with $CO_2$at Elevated Pressure (가압하에서 인도네시아 아역청탄촤의 $CO_2$ 가스화 반응성에 관한 실헙적 연구)

  • 안달홍;고경호;이종민;주용진;김종진
    • Journal of Energy Engineering
    • /
    • v.10 no.3
    • /
    • pp.206-213
    • /
    • 2001
  • Gasification kinetics of an Indonesian sub-bituminous coal-char with $CO_2$at elevated pressure was investigated with a pressurised drop tube furnace reactor. The effects of reaction temperature (900~140$0^{\circ}C$), partial pressure of carbon dioxide (0.1~0.5 MPa), and total system pressure (0.5, 0.7, 1.0, 1.5MPa) on gasification rate of the coal char with $CO_2$have been determined. It was found that the gasification rate was dependent on the total system pressure with the same partial pressure and temperature. The $n^{th}$ order rate equation (R=k $P^{g}$ $_{asn}$) was modified to be R=k $P^{g}$ $_{asn}$ $P^{m}$ $_{total}$ to describe the gasification rate where the total system pressure was changed. The gasification reaction rate of char-$CO_2$at high temperature and elevated pressure may be expressed as dX/dt=(174.1)exp(-71.5/RT)( $P_{CO2}$)0.40( $P_{total}$ )0.65(1-X)$^{2}$ 3/.X> 3/.

  • PDF

Characteristics of Fe-6.5wt%Si Core Material by Chemical Vapor Deposition Method (화학기상증착에 의한 Fe-6.5wt%Si철심재료의 특성평가)

  • Yun, Jae-Sik;Kim, Byeong-Il;Park, Hyeong-Ho;Bae, In-Seong;Lee, Sang-Baek
    • Korean Journal of Materials Research
    • /
    • v.11 no.6
    • /
    • pp.512-518
    • /
    • 2001
  • It has been well known that 6.5wt% Si steel sheets have excellent magnetic properties such as low core loss. high maximum permeability and low magnetostriction. In this work, we studied a method for producing 6.5wt% Si steel sheets using a chemical vapor deposition (CVD) method. The following is the procedure adopted in this work to produce 6.5wt% Si steel sheets; SiCl$_4$ gas is applied onto a low content-Si steel sheet placed in a tube furnace. Silicon atoms resulted from the decomposition of SiCl$_4$ are permeated through the surface of the steel sheet. Finally, by the diffusion process maintaining it under a high temperature the silicon atoms diffuse uniformly into the sheet. Through this process, 6.5wt% Si steel sheets can be obtained. The manufactured Fe-6.5wt% Si steel sheet with a thickness of 0.5mm exhibited a high frequency core loss (W$_{2}$1k/) of 8.92 W/kg. Its permeability increased from 37,100 to 53,300 at 1 tesular(T). The mechanical properties of the manufactured steel sheets were also estimated and the result showed that the workability was significantly improved by annealing in vacuum at 773k. Increased plastic deformation was also observed prior to fracture and the amount of grain boundary rupture was reduced.

  • PDF

A Scale-Up Test for Preparation of AlN by Carbon Reduction and Subsequent Nitridation Method (탄소환원질화법에 의한 AlN 제조 규모확대 시험결과)

  • Park, Hyung-Kyu;Kim, Sung-Don;Nam, Chul-Woo;Kim, Dae-Woong;Kang, Moon-Soo;Shin, Gwang-Hee
    • Resources Recycling
    • /
    • v.25 no.5
    • /
    • pp.75-83
    • /
    • 2016
  • AlN powder was prepared by carbon reduction and subsequent nitridation method through the scale-up experiments of 0.7 ~ 1.5 kg per batch. AlN powder was synthesized using the mixture of $Al_2O_3$ powder and carbon black at $1,550{\sim}1,750^{\circ}C$ for 0.5 ~ 4 hours under nitrogen atmosphere (flow rate of nitrogen gas: $10{\sim}40{\ell}/min$) at $2.0{\times}10^{-1}Torr$. Experimental results showed that $1,700{\sim}1,750^{\circ}C$ for the reaction temperature, 3 hr for reaction time, and $40{\ell}/min$ for the flow rate of nitrogen gas were the optimal conditions. Also, in order to remove carbon in the synthesized AlN, the remained carbon was removed at $650{\sim}750^{\circ}C$ for 1 ~ 2 hr using horizontal tube furnace. The results showed that 1 : 3.2 mol ratio of $Al_2O_3$ to carbon black, reaction temperature of $750^{\circ}C$, reaction time of 2 hours, rotating speed of 1.5 rpm under atmosphere condition were the optimal conditions. Under these conditions, high-purity AlN powder over 99% could be prepared: carbon and oxygen contents of the AlN powder were 835 ppm and 0.77%, respectively.

Investigation on Growth Characteristic of ZnO Nanostructure with Various O2 Pressures by Thermal Evaporation Process (열증착법으로 성장된 ZnO 나노구조물의 산소유량 변화에 대한 성장 변화)

  • Kim, Kyoung-Bum;Jang, Yong-Ho;Kim, Chang-Il;Jeong, Young-Hun;Lee, Young-Jin;Jo, Jeong-Ho;Paik, Jong-Hoo;Nahm, Sahn
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.10
    • /
    • pp.839-843
    • /
    • 2011
  • ZnO nanostructures were developed on a Si (100) substrate from powder mixture of ZnO and 5 mol% Pd (ZP-5) as reactants by ${\times}$ sccm oxygen pressures(x= 0, 10, 20, 40). DTA (differential thermal analysis) result shows the Pd(5 mol%)+ZnO mixtured powder(PZ-5) is easily evaporated than pure ZnO powder. The PZ-5 mixtured powder was characterized by DTA to determine the thermal decomposition which was found to be at $800^{\circ}C$, $1,100^{\circ}C$. Weight loss(%) and ICP (inductively coupled plasma) analysis reveal that Zn vaporization is decreased by increased oxygen pressures from the PZ-5 at $1,100^{\circ}C$ for 30 mins. Needle-like ZnO nanostructures array developed from 10 sccm oxygen pressure, was well aligned vertically on the Si substrate at $1,100^{\circ}C$ for 30 mins. The lengths of the Needle-like ZnO nanostructures is about 2 ${\mu}m$ with diameters of about 65 nm. The developed ZnO nanostructures exhibited growth direction along [001] with defect-free high crystallinity. It is considered that Zn vaporization is responsible for the growth of Needle-like ZnO nanostructures by controlling the oxygen pressures. The photoluminescence spectra of ZnO nanostructures exhibited stronger 376.7 nm NBE (near band-edge emission) peak and 529.3 nm DLE (deep level energy) peak.

Sol-gel deposited TiInO thin-films transistor with Ti effect

  • Kim, Jung-Hye;Son, Dae-Ho;Kim, Dae-Hwan;Kang, Jin-Kyu;Ha, Ki-Ryong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.200-200
    • /
    • 2010
  • In recent times, metal oxide semiconductors thin films transistor (TFT), such as zinc and indium based oxide TFTs, have attracted considerable attention because of their several advantageous electrical and optical properties. There are many deposition methods for fabrication of ZnO-based materials such as chemical vapor deposition, RF/DC sputtering and pulsed laser deposition. However, these vacuum process require expensive equipment and result in high manufacturing costs. Also, the methods is difficult to fabricate various multicomponent oxide semiconductor. Recently, several groups report solution processed metal oxide TFTs for low cost and non vacuum process. In this study, we have newly developed solution-processed TFTs based on Ti-related multi-component transparent oxide, i. e., InTiO as the active layer. We propose new multicomponent oxide, Titanium indium oxide(TiInO), to fabricate the high performance TFT through the sol-gel method. We investigated the influence of relative compositions of Ti on the electrical properties. Indium nitrate hydrate [$In(NO^3).xH_2O$] and Titanium isobutoxide [$C_{16}H_{36}O_4Ti$] were dissolved in acetylacetone. Then monoethanolamine (MEA) and acetic acid ($CH_3COOH$) were added to the solution. The molar concentration of indium was kept as 0.1 mol concentration and the amount of Ti was varied according to weighting percent (0, 5, 10%). The complex solutions become clear and homogeneous after stirring for 24 hours. Heavily boron (p+) doped Si wafer with 100nm thermally grown $SiO_2$ serve as the gate and gate dielectric of the TFT, respectively. TiInO thin films were deposited using the sol-gel solution by the spin-coating method. After coating, the films annealed in a tube furnace at $500^{\circ}C$ for 1hour under oxygen ambient. The 5% Ti-doped InO TFT had a field-effect mobility $1.15cm^2/V{\cdot}S$, a threshold voltage of 4.73 V, an on/off current ratio grater than $10^7$, and a subthreshold slop of 0.49 V/dec. The 10% Ti-doped InO TFT had a field-effect mobility $1.03\;cm^2/V{\cdot}S$, a threshold voltage of 1.87 V, an on/off current ration grater than $10^7$, and a subthreshold slop of 0.67 V/dec.

  • PDF

Magnetic Susceptibility depending on the Thermal Degradation of HK-40 Steel (HK-40강의 열화도에 따른 자화율의 변화)

  • Kim, Jeong-Min;Son, De-Rac;Park, Jong-Seo;Nahm, Seung-Hoon;Kim, Dong-Gyun;Han, Sang-In;Choi, Song-Chun;Ryu, Dae-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.1
    • /
    • pp.22-28
    • /
    • 2004
  • Since the used materials of furnace heater tube with different kinds of thermal degradation were not commonly available, the HK-40 steel specimens were heat-treated isothermally at elevated temperature to simulate the microstructure at the service temperature. HK-40 steel specimens with five different aging time were prepared by isothermal heat treatment at $1050^{\circ}C$. The characteristics of the magnetic susceptibility have been investigated for the degradation evaluation of HK-40 steel. The magnetic susceptibility at room temperature increases as the extent of degradation of the materials increases. The variation of magnetic susceptibility was compared with the variation of tensile properties and Vickers hardness. To investigate the effect of the microsturctural change on the characteristics of tensile properties, hardness and magnetic susceptibility, the microstructures were examined by a scanning electron microscope(SEM) and the chemical compositions were analyzed by a energy spectrometer of SEM. As a result, the magnetic susceptibility method can be suggested as one of the nondestructive evaluation methods for the degradation of the HK-40 steel.