• Title/Summary/Keyword: Tube bending

Search Result 302, Processing Time 0.03 seconds

Stability Analysis of Vertical Pipeline Subjected to Underground Excavation (지하공간 굴착에 따른 수직파이프 구조물의 안정성해석)

  • 김종우
    • Tunnel and Underground Space
    • /
    • v.10 no.4
    • /
    • pp.533-543
    • /
    • 2000
  • Deformation behavior and stability of vertical pipeline subjected to underground excavation have been studied by means of numerical analysis. Vortical ground displacements cause the pipe to be compressed, while horizontal ones cause it to be bent. In that region the vertical pipeline meets with the induced compressive stress and bending stress. In addition horizontal rock stress subjected to underground excavation may press the tube in its radial direction and it finally produces the tangential stress of pipe. In this study active gas well system is considered as an example of vertical pipelines. Factor analysis has been conducted which has great influence on the pipeline behavior. Three case studies are investigated which have the different pillar widths and gas well locations in pillar. For example, where overburden depth is 237.5 m and thickness of coal seam is 2.5 m, chain pillar of 45.8 m width in the 3-entry longwall system is proved to maintain safely the outer casing of gas welt which is made of API-55 steel, 10$\frac{3}{4}$ in. diameter and 0.4 in. thickness. Finally an active gas well which was broken by longwall mining is analyzed, where the induced shear stress turn out to exceed the allowable stress of steel.

  • PDF

P-M Interaction Curve for Square CFTs with High-Strength Concrete (고강도 콘크리트를 사용한 각형 CFT 기둥의 축력-모멘트 상관곡선)

  • Choi, Young Hwan;Kim, Kang Su;Choi, Sung Mo;Lee, Sangsup
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.6
    • /
    • pp.575-585
    • /
    • 2007
  • In this study, a new design equation was presented for square CFTs with high-strength concrete subjected to axial compression and bending. In a previous study, a design equation for square CFTs with normal strength concrete was proposed. A parametric study by fiber analysis was performed taking the width-to-thickness ratio (b/t) and the relative concrete strength to the yield strength of the steel tube (fck/Fy) as the main parameters of this study to determine the maximum moment and the axial load at the maximum moment. A new constitutive model for concrete was adopted for fiber analysis in order to take into account the effect of high-strength concrete. The results of the parametric study were embedded into the method which was presented in the previous study to formulate a new design equation that can be easily used for estimating the strength of square CFTs with high-strength concrete.

Member Utilization Concept Design for Hollow Circular Section Multi-column Tower Subjected to 10MW Level Wind Turbines (10MW급 풍력발전용 원형강관 멀티기둥타워의 부재유용도 개념설계)

  • Kim, Kyungsik;Kim, Mi Jin
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.3
    • /
    • pp.205-215
    • /
    • 2017
  • This study presents an example of conceptual design for hollow circular section multi-column tower system subjected to 10MW level wind load by introducing a method based on member utilization that examine both structural stability and economical efficiency. The basic assumptions for the proto type of a multi-column tower that can replace a single-cylinder tower were suggested and structural models were constructed following the assumptions and analyzed for identifying member forces. Based on the calculated member strengths and acting loads, the member utilization of the proposed multi-column tower structures were calculated for axial force, shear, bending and torsion and evaluaed for suitability as a wind tower. Design parameters such as steel tube dimensions, slenderness ratio, and number of floors for braces was proposed in the acceptable range of member utilization for conceptual design of multi-column wind towers.

A Study on Detection of a Critical Spot and the Securing Safety Method of CFRP Bicycle Forks by Finite Element Method (유한요소법을 이용한 CFRP 자전거 포크의 취약부 탐색 및 안전성 확보 방안 연구)

  • Lee, Su-Yeong;Lee, Nam Ju;Choi, Ung-Jae;Kim, Hong Seok;Shin, Ki-Hoon;Cheong, Seong-Kyun
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.6
    • /
    • pp.1-5
    • /
    • 2016
  • A bicycle is one of the most popular sporting goods in view of a sport activity and a human health. Metallic materials such as steel, aluminum, etc. were mainly used to the bicycle fork in the past. Nowadays, the carbon fiber reinforced composite materials are widely used to the manufacturing of a bicycle fork to reduce the weight and to increase the efficiency. Safety is a most important design parameter of a bicycle fork even if the weight and cost reduction are important. Bicycle failure may happen at the critical spot of a bicycle fork and cause the accident. In this paper, the composite bicycle fork will be analyzed to secure the safety and detect a critical spot by using the finite element method with Tsai-Wu failure criterion. The stress data were obtained for the laminated composites with various number of plies and fiber orientation under the bending load. Thus, design concept of a bicycle fork was proposed to secure the safety of a bicycle. The finite element analysis results show that the connection area between a steer tube and a fork blade is critical spot, and 75 or more layers of 0 degree are needed to secure the safety of a bicycle fork.

Development of Evaluation Technique of High Temperature Creep Characteristics by Small Punch-Creep Test Method (ll) - Boiler Header - (Sp-Creep 시험에 의한 고온 크리프 특성 평가 기술 개발(ll) - 보일러 헤더 -)

  • Baek, Seung-Se;Lee, Dong-Hwan;Ha, Jeong-Su;Yu, Hyo-Seon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.1
    • /
    • pp.55-60
    • /
    • 2002
  • For the development of a new creep test technique, the availability of SP-Creep test is discussed for 1Cr-0.5Mo boiler header material. And some results are also compared with those of 2.25Cr- 1Mo steel which widely uses as boiler superheater tube. The results can be summarized as follows. The load exponents(n) obtained by SP-Creep test for 1Cr-0.5Mo steel are decreased with increasing creep temperature and the values are 15.67, 13.89, and 17.13 at 550$^{circ}C$ ,575$^{circ}C$ and 600$^{circ}C$, respectively. The temperature dependence of the load exponent is given by n = 107.19 - 0.1108T. This reason that load exponents show the extensive range of 10∼16 is attributed to the fine carbide such as M$_{23}$C$_{6}$ in lath tempered martensitic structures. At the same creep condition, the secondary creep rate of 1Cr-0.5Mo steel is lower than the 2.25Cr-1Mo steel1 due to the strengthening microstructure composed by normalizing and tempering treatments. Through a SEM observation, it can be summarized that the primary, secondary, and tertiary creep regions of SP-Creep specimen are corresponding to plastic bending, plastic membrane stretching, and plastic instability regions among the deformation behavior of four steps in SP test, respectively.y.

Fabrication of Continuously Porous Alumina Bodies by Multi-Extrusion Process and their In-vitro and In-vivo Study for Biocompatibility (다중압출공정을 이용한 알루미나 연속다공질체 제조 및 그의 생체친화성 평가를 위한 In-vitro, In-vivo 실험)

  • 강인철;조순희;송호연;이병택
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.7
    • /
    • pp.560-566
    • /
    • 2004
  • To fabricate the continuously porous alumina bodies by multi-extrusion process, carbon powder and ethylene vinyl acetate were used as a pore forming agent and a binder, respectively. As the change of extrusion pass number, reduction ratio as well as the volume fraction of core and tube, the porous alumina bodies having various kind of pore size and porosity could be obtained. The porous bodies showed continuous pore shape, high specific surface as well as high bending strength, which were compared with those of commercial alumina bodies. In-vitro study was carried out using MG-63 osteoblast cells to investigate of their biocompatibility. As a result, the cells grew well on top and bottom as well as inside surface of pore. From the result of in-vivo study of 3-dimensional porous alumina bodies using rats, it was confirmed that any inflammatory response was not found in the subcutaneous tissue around porous body. Also the porous bodies removed from the rats were fully covered with well-developed fibrous tissues and showed the formation of new capillary blood vessels.

Seismic performance of mixed column composed of square CFST column and circular RC column in Chinese archaized buildings

  • Xue, Jianyang;Zhou, Chaofeng;Lin, Jianpeng
    • Steel and Composite Structures
    • /
    • v.29 no.4
    • /
    • pp.451-464
    • /
    • 2018
  • This paper presents some quasi-static tests for 4 mixed columns composed of CFST column and RC column. The seismic performance and failure mode were studied under low-cyclic revised loading. The failure mode was observed under different axial compression ratios. The hysteretic curve and skeleton curve were obtained. The effects of axial compression ratio on yield mechanism, displacement ductility, energy dissipation, stiffness and strength attenuation were analyzed. The results indicate that the failure behavior of CFST-RC mixed column with archaized style is mainly caused by bending failure and accompanied by some shear failure. The axial compression ratio performs a control function on the yielding order of the upper and lower columns. The yielding mechanism has a great influence on the ductility and energy dissipation capacity of specimens. Based on the experiment, finite element analysis was made to further research the seismic performance by ABAQUS software. The variable parameters were stiffness ratio of upper and lower columns, axial compression ratio, yielding strength of steel tube, concrete strength and rebar ratio. The simulation results show that with the increase of stiffness ratio of the upper and lower columns, the bearing capacity and ductility of specimens can correspondingly increase. As the axial compression ratio increases, the ductility of the specimen decreases gradually. The other three parameters both have positive effect on the bearing capacity but have negative effect on the ductility. The results can provide reference for the design and engineering application of mixed column consisted of CFST-RC in Chinese archaized buildings.

An analytical model for PVC-FRP confined reinforced concrete columns under low cyclic loading

  • Fang, Yuan;Yu, Feng;Chen, Anchun;Wang, Shilong;Xu, Guoshi
    • Structural Engineering and Mechanics
    • /
    • v.77 no.2
    • /
    • pp.179-196
    • /
    • 2021
  • Experimental investigations on the seismic behaviors of the PVC-FRP Confined Reinforced Concrete (PFCRC) columns under low cyclic loading are carried out and two variable parameters including CFRP strips spacing and axial compression ratio are considered. The PFCRC column finally fails by bending and is characterized by the crushing of concrete and yielding of the longitudinal reinforcement, and the column with a high axial compression ratio is also accompanied by the cracking of the PVC tube and the fracture of CFRP strips. The hysteretic curves and skeleton curves of the columns are obtained from the experimental data. With the increase of axial compression ratio, the stiffness degradation rate accelerates and the ductility decreases. With the decrease of CFRP strips spacing, the unloading sections of the skeleton curves become steep and the ductility reduces significantly. On the basis of fiber model method, a numerical analysis approach for predicting the skeleton curves of the PFCRC columns is developed. Additionally, a simplified skeleton curve including the elastic stage, strengthening stage and unloading stage is suggested depending on the geometric drawing method. Moreover, the loading and unloading rules of the PFCRC columns are revealed by analyzing the features of the skeleton curves. The quantitative expressions that are used to predict the unloading stiffness of the specimens in each stage are proposed. Eventually, an analytical model for the PFCRC columns under low cyclic loading is established and it agrees well with test data.

Effects of Reinforced Fibers on Energy Absorption Characteristics under Quasi-static Compressive Loading of Composite Circular Tubes (강화섬유에 따른 준정적 하중하에서 복합소재 원형튜브의 에너지 흡수특성 평가 연구)

  • Kim, Jung-Seok;Yoon, Huk-Jin;Lee, Ho-Sun;Choi, Kyung-Hoon
    • Composites Research
    • /
    • v.22 no.6
    • /
    • pp.32-38
    • /
    • 2009
  • In this study, the energy absorption capabilities and failure modes of four different kinds of circular tubes made of carbon, Kevlar and carbon-Kevlar hybrid composites with epoxy resin have been evaluated. In order to achieve these goals, these tubes were fabricated with unidirectional prepregs and compressive tests were conducted for the tubes under 10mm/min loading speed. From the test results, carbon/epoxy tubes were collapsed by brittle fracturing mode and showed the best energy absorption capabilities, while Kevlar/epoxy tubes were crushed by local buckling mode and worst. The hybrid [$90_C/0_K$] tubes were failed in a local bucking mode and showed good post crushing integrity, whereas [$90_K/0_C$] tubes were failed in a lamina bending mode and bad post crushing integrity.

Investigating the load-displacement restorative force model for steel slag self-stressing concrete-filled circular steel tubular columns

  • Feng Yu;Bo Xu;Chi Yao;Alei Dong;Yuan Fang
    • Steel and Composite Structures
    • /
    • v.49 no.6
    • /
    • pp.615-631
    • /
    • 2023
  • To investigate the seismic behavior of steel slag self-stressing concrete-filled circular steel tubular (SSSCFCST) columns, 14 specimens were designed, namely, 10 SSSCFCST columns and four ordinary steel slag (SS) concrete (SSC)-filled circular steel tubular (SSCFCST) columns. Comparative tests were conducted under low reversed cyclic loading considering various parameters, such as the axial compression ratio, diameter-thickness ratio, shear-span ratio, and expansion ratio of SSC. The failure process of the specimens was observed, and hysteretic and skeleton curves were obtained. Next, the influence of these parameters on the hysteretic behavior of the SSSCFCST columns was analyzed. The self stress of SS considerably increased the bearing capacity and ductility of the specimens. Results indicated that specimens with a shear-span ratio of 1.83 exhibited compression bending failure, whereas those with shear-span ratios of 0.91 or 1.37 exhibited drum-shaped cracking failure. However, shear-bond failure occurred in the nonloading direction. The stiffness of the falling section of the specimens decreased with increasing shear-span ratio. The hysteretic curves exhibited a weak pinch phenomenon, and their shapes evolved from a full shuttle shape to a bow shape during loading. The skeleton curves of the specimens were nearly complete, progressing through elastic, elastoplastic, and plastic stages. Based on the experimental study and considering the effects of the SSC expansion rate, shear-span ratio, diameter-thickness ratio, and axial compression ratio on the seismic behavior, a peak displacement coefficient of 0.91 was introduced through regression analysis. A simplified method for calculating load-displacement skeleton curves was proposed and loading and unloading rules for SSSCFCST columns were provided. The load-displacement restorative force model of the specimens was established. These findings can serve as a guide for further research and practical application of SSSCFCST columns.