• 제목/요약/키워드: Tube bending

검색결과 302건 처리시간 0.026초

A high-order analytical method for thick composite tubes

  • Sarvestani, Hamidreza Yazdani;Hojjati, Mehdi
    • Steel and Composite Structures
    • /
    • 제21권4호
    • /
    • pp.755-773
    • /
    • 2016
  • In the present paper, a new high-order simple-input analytical method is used to study thick laminated composite straight tubes subjected to combined axial force, torque and bending moment. The most general displacement field of elasticity for an arbitrary laminated composite straight tube is obtained to analytically calculate stresses under combined loadings based on a layerwise method. The accuracy of the proposed method is subsequently verified by comparing the numerical results obtained using the proposed method with finite element method (FEM) and experimental data. The results show good corresponded. The proposed method provides advantages in terms of computational time compared to FEM.

콘크리트의 구속효과와 재료비선형을 고려한 내부 구속 CFT 기둥의 축력-모멘트 상호작용 분석 (Analysis of the Axial Force-Bending Moment Interaction for a CFT Column Considering the Confining Effect and the Material Nonlinearity of Concrete)

  • 한택희;염응준;윤기용;이창수;강진욱;강영종
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.141-148
    • /
    • 2006
  • Concrete in a CFT(Concrete Filled Tube) column has enhanced strength and ductility because it is triaxially confined by a steel tube. But CFT columns are designed based on linear analyses by stress block method without the confining effect or the nonlinearity of the concrete. These make the significantly difference between the analysis results and the experimental results. Thus in this study, a nonlinear CFT column model was developed considering the confining effect on the concrete in a CFT column. This developed model was verified by experimental results from other researchers and compared with the results of various specifications. With the developed model, parametric studies were performed and the developed column model showed reasonable and accurate results.

  • PDF

Simplified Algorithm of the Novel Steel-concrete Mixed Structure under Lateral Load

  • Li, Liang;Li, Guo-qiang;Liu, Yu-shu
    • 국제초고층학회논문집
    • /
    • 제1권4호
    • /
    • pp.247-254
    • /
    • 2012
  • In order to improve the seismic behaviors of traditional steel-concrete mixed structure, a novel steel concrete mixed structure consisting of steel frames braced with buckling restrained braces (BRBs) and a concrete tube is proposed. Based on several assumptions, the simplified mechanical model of the novel mixed structure is established, and the shear and bending stiffness formulas of the steel frames, BRBs and concrete tube are respectively introduced. The equilibrium differential equation of the novel mixed structure under horizontal load is developed based on the structural elastic theory. The simplified algorithms to determine the lateral displacement and internal forces of the novel mixed structure under the inverted-triangle distributed load, uniformly load and top-concentrated load are then obtained considering several boundary conditions and compatible deformation conditions. The effectiveness of the simplified algorithms is verified by FEM comparison.

튜브 액압성형품의 공정단계별 가공 경화 특성 연구 (A Study on the strain hardening of tube hydroforming according to process)

  • 박현규;임홍섭;이혜경;전동현;문영훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 춘계학술대회 논문집
    • /
    • pp.325-328
    • /
    • 2008
  • In recent years, developments of light weight vehicle are one of the most important issues in automotive industry. It is important to know the variations of the mechanical properties in the hydro forming process for the safe and durable design purposes. Generally, tube hydroforming process consists of three main processes such as bending, preforming, and hydroforming. It means that the strain hardening histories of final products are nonlinear. In this study, strain hardening behavior during hydroforming has been investigated by hydroforming of engine cradle as a model process. The variation of mechanical properties such as local hardness and strength were used as an index of strain hardening during respective processes. The correlationship between strength and hardness obtained from tensile test has been equivalently converted into correlation between hardness and measured strain.

  • PDF

하이드로 임베딩시 체결용 연결요소의 형상 최적화 연구 (Studies on the Shape Optimization of Connecting Element for Hydro-Embedding)

  • 김봉준;김동규;김동진;문영훈
    • 소성∙가공
    • /
    • 제14권9호통권81호
    • /
    • pp.756-763
    • /
    • 2005
  • The applicability and productivity of hydroforming process can be increased by combining pre- and post-forming processes such as the bending, piercing and embedding process. For the fabrication of automotive parts, the hollow bodies with connecting nuts are widely used to connect parts together. Hollow body with connecting nuts has been conventionally fabricated by welding nuts or screwing in autobody screws. It requires multiple steps and devices fur the welding and/or screwing Therefore in this study, hydro-embedding process that combines the hydraulic embedding of connecting element(nut) with hydroforming process is investigated. Studies on the hydro-embedding technology have been performed to optimize the shape of the connecting element by analyzing the deformed mode of the embedded tube The effects of the shape of the screw tip, screw thread and shape of thread on the connection force between the tube and the connecting element have been investigated to optimize the shape of connecting element. Finite element analysis has also been performed to provide deformation behaviors of the tube surrounding a hole produced by hydro-embedding.

코일형 나선 전열관의 내부 응축열전달 특성에 관한 실험 적 연구 (Experimental Study on In-Tube Condensation Heat Transfer Characteristics of Helically Coiled Spiral Tubes)

  • 박종운;권영철;한규일
    • 대한기계학회논문집B
    • /
    • 제25권12호
    • /
    • pp.1676-1683
    • /
    • 2001
  • An experimental study on condensation heat transfer characteristics of helically coiled spiral tubes was performed. The refrigerant is R-113. A refrigerant loop was established to measure the condensation heat transfer coefficients. Experiments were carried out uniform heat flux of 15 kw/m$^2$, refrigerant quality of 0.1∼0.9, curvature ratio of 0.016, 0.025 and 0.045. The curvature of a coil was defined as the ratio of the inside diameter of the tube to the diameter of the bending circle. To compare the condensation heat transfer coefficients of coiled spiral tubes, the previous results on coiled plain tubes and straight plain tubes were used. The results shows that the condensation heat transfer coefficients of coiled spiral tubes largely increase, as increasing Re and quality, compared to those of coiled plain tubes and straight plain tubes. As increasing degree of subcooling, however, the condensation heat transfer coefficients on coiled spiral tubes decrease. It is found that the heat transfer enhancement is more better than coiled plain tubes and straight plain tubes, as increasing curvature ratio.

축방향 압축력을 받는 원통형 박막소재의 좌굴후 탄소성 대변형에 관한 실험 및 해석 연구 (Experimental and Numerical Study on the Elastic-Plastic, Large Deflection, Post-Buckling Behavior of Axially Compressed Circular Cylindrical Tubes)

  • 권세문;윤희도
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.969-974
    • /
    • 2001
  • Circular cylindrical tubes are widely used in structures such as vehicles and aircraft structures, where light weight and high compressive/bending/torsional load carrying capacity are required. When axially compressed, relatively thick circular cylindrical tubes deform in a so-called ring mode. Each ring develops and completely collapses one by one until the entire length of the tube collapses. During the collapse process the tube absorbs a large amount of energy. Like honey-comb structures, circular cylindrical tubes are light weighted, are capable of high axial compressive load, and absorb a large amount of energy before being completely collapsed. In this report, the subject of axial plastic buckling of circular cylindrical tubes was reviewed first. Then, the axial collapse process of the tubes in a so-called ring mode was studied both experimentally and numerically. In the experiment, steel tubes were axially compressed slowly until they were completely collapsed. Fixed boundary condition was provided. Numerical study involves axisymmetric, elastic-plastic, large deflection, self-contact mechanisms. The measured and calculated results were presented and compared with each other. The purpose of the study was to evaluate the load carrying capacity and the energy absorbing capacity of the tube.

  • PDF

Further analysis on the flexural behavior of concrete-filled round-ended steel tubes

  • Ding, Fa-xing;Zhang, Tao;Wang, Liping;Fu, Lei
    • Steel and Composite Structures
    • /
    • 제30권2호
    • /
    • pp.149-169
    • /
    • 2019
  • A new form of composite column, concrete-filled round-ended steel tubes (CFRTs), has been proposed as piers or columns in bridges and high-rise building and has great potential to be used in civil engineering. Hence, the objective of this paper presents an experimental and numerical investigation on the flexural behavior of CFRTs through combined experimental results and ABAQUS standard solver. The failure mode was discussed in detail and the specimens all behaved in a very ductile manner. The effect of different parameters, including the steel ratio and aspect ratio, on the flexural behavior of CFRTs was further investigated. Furthermore, the feasibility and accuracy of the numerical method was verified by comparing the FE and experimental results. The moment vs. curvature curves of CFRTs during the loading process were analyzed in detail. The development of the stress and strain distributions in the core concrete and steel tube was investigated based on FE models. The composite action between the core concrete and steel tube was discussed and clarified. In addition, the load transfer mechanism of CFRT under bending was introduced comprehensively. Finally, the predicted ultimate moment according to corresponding designed formula is in good agreement with the experimental results.

Experimental investigation of natural bond behavior in circular CFTs

  • Naghipour, Morteza;Khalili, Aidin;Hasani, Seyed Mohammad Reza;Nematzadeh, Mahdi
    • Steel and Composite Structures
    • /
    • 제42권2호
    • /
    • pp.191-207
    • /
    • 2022
  • Undoubtedly, the employment of direct bond interaction between steel and concrete is preceding the other mechanisms because of its ease of construction. However, the large scatter in the experimental data about the issue has hindered the efforts to characterize bond strength. In the following research, the direct bond interaction and bond-slip behavior of CFTs with circular cross-section were examined through repeated load-reversed push-out tests until four cycles of loading. The influence of different parameters including the diameter of the tube and the use of shear tabs were assessed. Moreover, the utilization of expansive concrete and external spirals was proposed and tested as ways of improving bond strength. According to the results section dimensions, tube slenderness, shrinkage potential of concrete, interface roughness and confinement are key factors in a natural bond. Larger diameters will lead to a considerable drop in bond strength. The use of shear tabs by their associated bending moments increases the bond stress up to eight times. Furthermore, employment of external spirals and expansive concrete have a sensible effect on enhancing bonds. Macro-locking was also found to be the main component in achieving bond strength.