• 제목/요약/키워드: Tube Transport

검색결과 164건 처리시간 0.028초

Fast transport with wall slippage

  • Tang, Zhipeng;Zhang, Yongbin
    • Membrane and Water Treatment
    • /
    • 제12권1호
    • /
    • pp.37-41
    • /
    • 2021
  • This paper presents the multiscale calculation results of the very fast volume transport in micro/nano cylindrical tubes with the wall slippage. There simultaneously occurs the adsorbed layer flow and the intermediate continuum fluid flow which are respectively on different scales. The modeled fluid is water and the tube wall is somewhat hydrophobic. The calculation shows that the power loss on the tube no more than 1.0 Watt/m can generate the wall slippage even if the fluid-tube wall interfacial shear strength is 1 MPa; The power loss on the scale 104 Watt/m produces the volume flow rate through the tube more than one hundred times higher than the classical hydrodynamic theory calculation even if the fluid-tube wall interfacial shear strength is 1 MPa. When the wall slippage occurs, the volume flow rate through the tube is in direct proportion to the power loss on the tube but in inverse proportion to the fluid-tube wall interfacial shear strength. For low interfacial shear strengths such as no more than 1 kPa, the transport in the tube appears very fast with the magnitude more than 4 orders higher than the classical calculation if the power loss on the tube is on the scale 104 Watt/m.

HCFC-22 냉매사용 차량냉동시스템의 증발 열전달에 관한 실험 (An Experiment on Evaporating Heat Transfer of HCFC-22 for Transport Refrigeration System)

  • 오명도;김선창
    • 설비공학논문집
    • /
    • 제6권2호
    • /
    • pp.166-174
    • /
    • 1994
  • An experimental study has been performed to identify the evaporation characteristics of HCFC-22 for transport refrigeration system. Heat transfer coefficients were measured in a horizontal, smooth evaporating tube with an inner diameter of 10.7mm and a length of 2.8m. The refrigerant was heated electrically by surface-wrapped heaters and uniform power is applied along the tube. The entire tube was divided into 7 sections. Surface temperatures of tube and refrigerant temperature in each test section were measured. Pressure drops in each section and the inlet pressure were also measured. The mass flowrate of the refrigerant was controlled and measured. A single tube evaporation test was conducted for different ranges of mass flux of refrigerant, heat flux of evaporator and condensing temperature of transport refrigeration system. The evaporation heat transfer coefficients of HCFC-22 were compared with predictions from the well known Chen's correlations. Averaged heat transfer coefficients in this experiment range from $2kW/m^2/^{\circ}C$ to $3kW/m^2/^{\circ}C$. Most of the experimental results differ from the predicted ones by less than ${\pm}30%$.

  • PDF

Experimental Observations of Boiling and Flow Evolution in a Coiled Tube

  • Ye, P.;Peng, X.F.;Wu, H.L.;Meng, M.;Gong, Y. Eric
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제16권1호
    • /
    • pp.22-29
    • /
    • 2008
  • A sequence of visually experimental observations was conducted to investigate the flow boiling and two-phase flow in a coiled tube. Different boiling modes and bubble dynamical evolutions were identified for better recognizing the phenomena and understanding the two-phase flow evolution and heat transfer mechanisms. The dissolved gases and remained vapor would serve as foreign nucleation sites, and together with the effect of buoyancy, centrifugal force and liquid flow, these also induce very different flow boiling nucleation, boiling modes, bubble dynamical behavior, and further the boiling heat transfer performance. Bubbly flow, plug flow, slug flow, stratified/wavy flow and annular flow were observed during the boiling process in the coiled tube. Particularly the effects of flow reconstructing and thermal non-equilibrium release in the bends were noted and discussed with the physical understanding. Coupled with the effects of the buoyancy, centrifugal force and inertia or momentum ratio of the two fluids, the flow reconstructing and thermal non-equilibrium release effects have critical importance for flow pattern in the bends and flow evolution in next straight sections.

Net Enthalpy Transport in Pulse Tube Refrigerators

  • Kang, Young-Goo;Jeong, Eun-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제7권
    • /
    • pp.33-44
    • /
    • 1999
  • Enthalpy transport in a pulse tube was investigated by two-dimensional analysis of mass, momentum and energy equations assuming that the axial temperature gradient in the pulse tube was constant. The time-averaged second-order conservation equations of mass, momentum and energy were used to show the existence of steady mass and enthalpy streaming. Effects of the axial temperature gradient, velocity amplitude ratio, and heat transfer between the gas and the tube wall On the steady mass and enthalpy streaming were shown. Enthalpy loss due to the steady mass streaming is zero for basic and orifice pulse tube refrigerators, but it is proportional to the axial temperature gradient and steady mass flow rate through a pulse tube for double inlet pulse tube refrigerators.

  • PDF

맥동관냉동기의 앤탈피이동 (Enthalpy transport in pulse tube refrigerators)

  • 강영구;정은수
    • 설비공학논문집
    • /
    • 제10권2호
    • /
    • pp.180-192
    • /
    • 1998
  • Enthalpy transport in a pulse tube was investigated by two-dimensional analysis of mass, momentum and energy equations assuming that the axial temperature gradient in the pulse tube is constant. Time-averaged second-order conservation equations of mass, momentum and energy were used to show the existence of steady mass streaming and enthalpy streaming. Effects of axial temperature gradient, velocity amplitude ratio and heat transfer between the gas and the wall on the steady mass streaming and enthalpy streaming were shown. Enthalpy loss due to the steady mass streaming is zero for basic and orifice pulse tube refrigerators, but it is proportional to the axial temperature gradient and steady mass flow rate through a pulse tube for double inlet pulse tube refrigerators.

  • PDF

맥동관의 2차원 해석모델 (Two-Dimensional Analysis Model of a Pulse Tube)

  • 백상호;정은수
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 1999년도 제1회 학술대회논문집(KIASC 1st conference 99)
    • /
    • pp.157-160
    • /
    • 1999
  • Enthalpy transport in a pulse tube was investigated by two-dimensional analysis of mass, momentum and energy equations of the gas as well as energy conservation of the tube wall. The mean temperature of the gas and the tube wall was obtained directly by assuming that the outer surface of a pulse tube is adiabatic. Effects of operating frequency, tube wall thickness, velocity ratio and velocity phase angle between both ends of a pulse tube on net enthalpy flow were shown.

  • PDF

동일신축 텔레스코픽모션을 갖는 천정이동장치 설계 (Design of Bridge Transport System with Equal Incremental Telescopic Motion)

  • 윤광호;이효직;이종광;박병석;김기호
    • 대한기계학회논문집A
    • /
    • 제34권2호
    • /
    • pp.227-235
    • /
    • 2010
  • 본 논문은 방사성시설에서 원격취급 작업을 위해 사용되는 서보조작기와 같은 장비의 이송을 위해 개발된 텔레스코픽 튜브를 갖는 천정이동장치의 설계에 관해 소개한다. 천정이동장치는 z-방향으로 신장, 수축이 가능한 텔레스코픽 튜브, 전력 및 신호 케이블의 관리를 위한 케이블 시스템, 횡행 움직임과 서보구동부 모듈수납을 위한 트롤리 시스템으로 이루어져 있다. 천정이동장치의 작업환경은 설계에 기하학적인 제약을 주게 되는데, 시설의 높이가 낮고 텔레스코픽 튜브의 수축시 길이가 짧아야하며 스트로크는 커야한다는 요구사항을 갖는다. 텔레스코픽 튜브 어셈블리는 위 제약조건을 만족하도록 비선형계획법을 풀어 최적의 치수를 선정하였다. 텔레스코픽 모션으로 발생하는 케이블 길이의 변화를 수용할 수 있는 케이블 시스템을 소개하였고, 또한 천정이동장치 시스템의 충분한 구동을 위한 서보구동부의 선택지침을 소개하였다.

STEAM GENERATOR TUBE INTEGRITY ANALYSIS OF A TOTAL LOSS OF ALL HEAT SINKS ACCIDENT FOR WOLSONG NPP UNIT 1

  • Lim, Heok-Soon;Song, Tae-Young;Chi, Moon-Goo;Kim, Seoung-Rae
    • Nuclear Engineering and Technology
    • /
    • 제46권1호
    • /
    • pp.39-46
    • /
    • 2014
  • A total loss of all heat sinks is considered a severe accident with a low probability of occurrence. Following a total loss of all heat sinks, the degasser/condenser relief valves (DCRV) become the sole means available for the depressurization of the primary heat transport system. If a nuclear power plant has a total loss of heat sinks accident, high-temperature steam and differential pressure between the primary heat transport system (PHTS) and the steam generator (SG) secondary side can cause a SG tube creep rupture. To protect the PHTS during a total loss of all heat sinks accident, a sufficient depressurization capability of the degasser/condenser relief valve and the SG tube integrity is very important. Therefore, an accurate estimation of the discharge through these valves is necessary to assess the impact of the PHTS overprotection and the SG tube integrity of the primary circuit. This paper describes the analysis of DCRV discharge capacity and the SG tube integrity under a total loss of all heat sink using the CATHENA code. It was found that the DCRV's discharge capacity is enough to protect the overpressure in the PHTS, and the SG tube integrity is maintained in a total loss of all heat accident.

PFC 히트파이프의 열전달 한계에 관한 연구 (A study on heat transport limitation for a perfluorocarbon heat pipe)

  • 강환국;김재진;김철주
    • 설비공학논문집
    • /
    • 제11권3호
    • /
    • pp.313-320
    • /
    • 1999
  • A PFC(Perfluorocarbon) heat pipe has been used recently for cooling of GTO(gate turn off) thyristors or diodes in electric commuter trains. The present study was conducted to determine heat transport limitation of a PFC heat pipe which is one of the important parameters in heat pipes design. The variables such as tube diameter, fill charge ratio, internal surface structure and operating temperature were examined by way of experiment. Experimental data showed that the heat transport limitation of PFC heat pipe was considerably low and mostly dependent on tube diameter, with the value of 440~500W for d$o$/=22.23mm and 150~200W for d$o$=15.88mm. The other parameters had negligible effects, except for the case of small charge ratio less than 30%. Some correlations proposed by previous studies were in agreement with data from this study within 10~30%.

  • PDF

CFD 해석을 통한 Plain형 핀-튜브 열교환기의 열전달 및 압력강하 특성에 관한 연구 (A study on heat transfer and pressure drop characteristics of plain fin-tube heat exchanger using CFD analysis)

  • 유소;윤준규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권6호
    • /
    • pp.615-624
    • /
    • 2014
  • 핀-튜브 열교환기는 산업용 보일러, 라디에이터, 냉동기 등에 많이 사용되고 있어 열교환기의 성능향상을 위한 다양한 연구가 진행되고 있다. 본 연구에서는 Plain형 핀-튜브 열교환기에 대해 가로피치, 와류발생기위치, 튜브표면의 돌기형상 및 돌기개수 등의 변화에 따른 열전달 및 압력강하 특성을 이론적으로 해석하였다. CFD 해석시 경계조건으로는 SST 난류모델을 적용하였으며, 튜브표면의 온도는 333 K이고, 입구측 공기의 온도와 속도는 423~438 K, 1.5~2.1 m/s로 가정하였다. 해석결과로는 열전달계수는 가로피치에 대한 영향은 큰 차이가 없으며, 열전달특성은 와류발생기 설치가 튜브 전방부에 위치할수록 양호한 것으로 나타났다. 또한 튜브표면의 돌기형상은 열전달 및 압력강하 특성에서 원형이 톱니형과 삼각형보다 적절하였으며, 16개 원형 돌기형상이 가장 양호하였다.