• Title/Summary/Keyword: Tube Support Plate

Search Result 27, Processing Time 0.022 seconds

The Analysis of Eddy Current Testing Signals Considering Influence of Ferromagnetic Support Plate (강자성체 지지판의 영향이 고려된 와전류탐상의 신호해석)

  • Kim, Yong-Taek;Lee, Hyang-Beom;Yim, Chang-Jae;Choi, Young-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.50-52
    • /
    • 2005
  • In this paper, the analysis of the eddy current testing(ECT) signals under thc Influence of the ferromagnetic support plate was performed in steam generator(SG) tube of nuclear power plant. In order to remove the influence of the ferromagnetic support plate, a multi-frequency ECT was used. The models which was established for the analysis of the signals is calculated using numerical analysis of finite element method. Through the result of numerical analysis, improved signals is acquired considering the influence of the ferromagnetic support plate using mixing of multi-frequency This paper is presented the residual errors and the phase changes for analysis of the defect signals which should be considered when conducting a ECT using multi-frequency.

  • PDF

Wear Characteristics of Multi- span Tube Due to Turbulence Excitation (다경간 전열관의 난류 가진에 의한 마모특성 연구)

  • Kim, Hyung-Jin;Sung, Bong-Zoo;Park, Chi-Yong;Ryu, Ki-Whan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.9 s.114
    • /
    • pp.904-911
    • /
    • 2006
  • A modified energy method for the fretting wear of the steam generator tube is proposed to calculate the wear-out depth between the nuclear steam generator tube and its support. Estimation of fretting-wear damage typically requires a non-linear dynamic analysis with the information of the gap velocity and the flow density around the tube. This analysis is very complex and time consuming. The basic concept of the energy method is that the volume wear rate due to the fretting-wear phenomena Is related to work rate which is time rate of the product of normal contact force and sliding distance. The wearing motion is due to dynamic interaction between vibrating tube and its support structure, such as tube support plate and anti-vibration bar. It can be assumed that the absorbed work rate would come from turbulent flow energy around the vibrating tube. This study also numerically obtains the wear-out depth with various wear topologies. A new dissection method is applied to the multi-span tubes to represent the vibrational mode. It turns out that both the secondary side density and the normal gap velocity are important parameters for the fretting-wear phenomena of the steam generator tube.

An Interaction Effect of Eddy Current Signals Due to the Neighboring Signal Sources (근접한 두 신호원에 의한 와전류 신호의 간섭 효과)

  • Cheong, Y.M.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.11 no.1
    • /
    • pp.7-12
    • /
    • 1991
  • The multi-frequency eddy current technique has been used for evaluation of various type of defects in tubings. However, this technique is not sufficient to detect and evaluate the defect in tubings if the defect is located in the geometrically complicated area(e. g. tube support plate, anti-vibration bar, tubesheet area) and mixing residue signal is significant to the defect signal. In order to improve the reliability of the multi-frequency eddy current technique, the effect of the interaction of mixing residue after frequency mixing with a function of distances between the defect and the tube support plate boundary has been analyzed theoretically. The experimental results have been discussed with the theoretical developments. The calculation shows the interaction between the two neighboring signal sources could be significant within the range of approximately 1.0mm with the experimental condition.

  • PDF

Analysis of Axial and Transverse Slip Displacements during the Oscillation of a Supported Tube (튜브진동 시 지지부에서의 축.횡방향 미끄럼변위 분석)

  • Song, Ju-Sun;Kim, Hyung-Kyu;Lee, Young-Ho;Kim, Jae-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.950-955
    • /
    • 2004
  • Slip displacement is brought into focus to study the tube fretting wear that occurs on the contact by the springs. An oscillating tube was in contact with plate support springs. The contact condition was varied as normal force 5 N, and gaps of 0.1 and 0.2 mm in the experiment. The oscillation range of the tube was also varied as 0.2, 0.3, 0.4 and 0.7 mm. Formulas for predicting the slip displacement range were derived in terms of the vibration amplitudes measured during the tube oscillation. It was found that the slip displacement in transverse direction was much higher ($720{\sim}33000$ times) than that in axial one. This resulted in the severer wear on the contact suffered from transverse slip.

  • PDF

FIV Characteristics of U-Tubes Due to Relocation of the Tube Supprot Plates (튜브 지지판 재배치에 따른 유체유발진동 특성 해석)

  • Kim, Hyung-Jin;Ryu, Ki-Wahn;Park, Chi-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.312-317
    • /
    • 2005
  • Fluid-elastic instability and turbulence excitation for an under developing steam generator are investigated numerically. The stability ratio and the amplitude of turbulence excitation are obtained by using the PIAT (Program for Integrity Assessment of Steam Generator Tube) code from the information on the thermal-hydraulic data of the steam generator. The aspect ratio, the ratio between the height of U-tube from the upper most tube support plate (h) and the width of two vertical portion of U-tube (w), is defined for geometric parameter study. Several aspect ratios with relocation of tube support plates are adopted to study the effects on the mode shapes and characteristics of flow-induced vibration. When the aspect ratio exceeds value of 1, most of the mode shapes at low frequency are generated at the top of U-tube. It makes very high value of the stability ratio and the amplitude of turbulent excitation as well. We can consider that the local mode shape at the upper side of U-tube will develop the wear phenomena between the tube and the anti-vibration bars such as vertical, horizontal, and diagonal strips. It turns out that the aspect ratio reveals very important parameter for the design stage of the steam generator. The appropriate value of the aspect ratio should be specified and applied.

  • PDF

Design of Pull Box Members on the Landing Pier Using Finite Element Analysis of a Steel Plate (강재 플레이트 유한요소해석을 이용한 잔교 상부의 풀 박스 부재의 선정)

  • Kim, Sungwon;Hong, Hyemin;Han, Taek Hee;Seo, Seung Nam
    • Journal of Coastal Disaster Prevention
    • /
    • v.4 no.3
    • /
    • pp.111-118
    • /
    • 2017
  • In this study, pull box members were designed by finite element analysis of a steel plate covering a pull box to secure its safety on the landing pier dedicated to the large research survey ship. It was assumed that the maximum load is due to the 250 tonf class crane used for unloading work when the working environment in the upper part of the landing pier was considered. The safety of the pull box was evaluated by the comparison between the yield strength of the steel plate and the result of stress analysis on the steel plate due to the crane load. It was found that the stress at the plate from the crane load exceeded the yield strength of the steel(205MPa) when the upper part of the pull box was protected by a $1950{\times}1950mm$ steel plate cover. In order to compensate for this, a concrete filled steel tube(CFT) column with a diameter of 150 mm and a steel thickness of 10 mm was reinforced at the center of the plate, and the finite element analysis was carried out. However, the maximum stress at the steel plate was higher than the yield strength of the steel in some load cases so that it was tried to find appropriate thickness of the steel plate and diameter of the CFT columns. Finally, the analysis results showed that the safety of the pull box was secured when the thickness of the steel plate and the diameter of the CFT column were increased to 30mm and 180mm, respectively.

3-D Finite Element Analyses of Steam Generator Tubes Considering the Gap Effects (간극효과를 고려한 증기발생기 전열관의 3차원 유한요소해석)

  • Cho, Young Ki;Park, Jai Hak
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.7 no.4
    • /
    • pp.51-56
    • /
    • 2011
  • Steam generator is one of the main equipments that affect safety and long term operation in nuclear power plants. Fluid flows inside and outside of the steam generator tubes and induces vibration. To prevent the vibration the tubes are supported by AVB (anti vibration bar). When the steam generator tube contact to AVB, it is damaged by the accumulation of wear and corrosion. Therefore studies are required to determine the effects of the gap between the steam generator tube and AVB. In order to obtain the stress and the displacement distributions of the steam generator tube, three dimensional finite element analyses were performed by using the commercial program ANSYS. Using the calculated the stress and the displacement distributions, the static residual strength of the steam generator tube can be evaluated. The results show that the stress and displacement of the steam generator tube increase significantly compared with the results from a zero-gap model.

Effects of Plastic Deformation on Surface Properties and Microstructure of Alloy 690TT Steam Generator Tube (증기발생기 전열관 Alloy 690TT의 소성변형이 표면특성 및 미세조직에 미치는 영향)

  • Soon-Hyeok Jeon;Ji-Young Han;Hee-Sang Shim;Sung-Woo Kim
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.20 no.1
    • /
    • pp.16-24
    • /
    • 2024
  • Denting of steam generator (SG) tube is defined as the reduction in tube diameter due to the stresses exerted by the corrosion products formed on the outer diameter surface. This phenomenon is mostly observed in the crevices between SG tube and the top-of tubesheet or tube support plate. Despite the replacement of SG tube with Alloy 690, which has better corrosion resistance than Alloy 600, the denting of SG tube still remains a potential problem that could decrease the SG integrity. Deformation of SG tube by denting phenomenon can affect the surface properties and microstructure of SG tube. In this study, the effects of plastic deformation on surface properties and microstructure of Alloy 690 thermally treated (TT) tube was investigated by using the various analysis techniques. The plastic deformation of Alloy 690 increased the surface roughness and area. Many surface defects such as ripped surface and micro-cracks were observed on the deformed Alloy 690TT specimen. Based on the electron backscatter diffraction analysis, the dislocation density of deformed SG tube increased compared to non-deformed SG tube. In addition, the effects of changes in surface properties and microstructure of SG tube on general corrosion behavior were discussed.

A Study on the Stiffness Characteristic of Repeated Unit Cell Structure (반복되는 구조물의 강성특성 연구)

  • Park, Soo;Seon, Kwang-Sang;Koo, Jae-Mean;Seok, Chang-Sung;Park, Tae-Jung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.3
    • /
    • pp.111-117
    • /
    • 2010
  • The repeated unit cell structure is applied to the composite, the carbon nano tube and sandwich panel. In this paper, a study on the stiffness of unit cell structure has been performed with the tube support plate of the steam generator. For this, repeated unit cell structure's equivalent elastic constant and poisson's ratio was evaluated through FEA and tests under the elastic range load. Also we evaluated the effect on the specimen size from results.

Eddy Current Testing of Type-439 S/S Tube of MSR in Turbine System (터빈 습분분리재열기 Type-439 스테인리스강 튜브 와전류검사)

  • Lee, Heejong;Cho, Chanhee;Jung, Jeehong;Moon, Gyoonyoung
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.4 no.2
    • /
    • pp.50-56
    • /
    • 2008
  • The tubes in heat exchanger are typically made of copper alloy, stainless steel, carbon steel, titanium alloy material. Type-439 ferritic stainless steel is ferromagnetic material, and furnish higher heat transfer rates than austenitic stainless steels and higher resistance to corrosion-induced flaws. Ferritic stainless steel can be found in low-pressure(LP) feedwater heaters and moisture separator reheaters(MSRs) in turbine system. LP feedwater heaters generally utilize thin wall Type-439 stainless steel tubing, whereas MSRs typically employ a heavier wall tubing with integral fins. Service-induced damage can occur on the O.D(outside diameter) surface of Type-439 ferritic stainless steel tubing which is employed for MSRs tubing, and the most typical damage mechanism is vibration-induced tube-to-TSP(tube support plate) wear and fatigue cracking. The wear has been reported that occurs mainly on the OD surface. Accordingly, in this study, we have evaluated the flaw sizing capability of magnetic saturation eddy current technique using magnetic saturation probe and flawed specimen.

  • PDF