• Title/Summary/Keyword: Tube Size

Search Result 809, Processing Time 0.028 seconds

A Study on the Evaluation Parameter of Sliding/Impact Wear in a High Temperature and Pressure Water Condition (고온고압 미끄럼/충격조건에서 마멸평가 변수 연구)

  • Lee Young-Ho;Song Ju-Sun;Kim Hyung-Kyu;Jung Youn-Ho
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.37-40
    • /
    • 2004
  • The impact/sliding wear tests have been performed in high temperature high pressure water in order to evaluate the effect of spring shape on the wear behavior of a spring supported tube for nuclear fuel fretting study. The results indicate that the tube wear volume and the size of the wear scar are closely related to each spring shape. From the analysis of the wear scar, it is possible to extract the real worn area (Aw) from the size of the wear scar (At). In addition, we found that the wear volume has a linear relation with the real worm area rather than the size of wear scar and this was only determined by each spring shape in the high temperature and pressure water condition. From the above results, it is possible to evaluate the wear resistant spring using the correlation between the variation of the real worn area and the wear behavior at each spring.

  • PDF

Characteristics of ultrafine $SiO_2$ particle synthesized by Electro-hydyodynamic spray (전기-수력학적 분사에 의해 합성된 초미세 $SiO_2$ 입자의 특성)

  • Yoon, J.U.;Yang, T.H.;Ahn, K.H.;Choi, M.S.
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.174-179
    • /
    • 2000
  • Ultrafine particles have been used widely in many high technology industrial areas. The spherical nonagglomerated and uniform nanometer-size $SiO_2$ particles are synthesized by the direct injection of TEOS(Tetraethyorthosilicate) using electro-hydrodynamic spray ins method. Electro-hydrodynamic spray can generate in the range of submicron-size TEOS particles with high electric charge by applying a high electric field between the liquid injection nozzle and the reaction tube. This TEOS particles are thermally decomposed or oxidized to produce nanometresized $SiO_2$ particles in the reaction tube. Spherical, nonagglomerated and ultrafine particle generated and examined at furnaced temperature, $800^{\circ}C$ and TEOS flowrate of 0.49 or $1.00cm^3/hr$ using SEM and SMPS. As the total gas flowrate changes from 1.51pm to 5.01pm, the mean diameter of $SiO_2$ particle decreases from 120 nm to 68nm.

  • PDF

Characteristics of Ultrafine SiO$_2$Particle Synthesized by Electro-Hydrodynamic Spray Injection in a Furnace (반응로내 전기-수력학적 분사에 의한 비응집 초미세 SiO$_2$ 입자 합성과 특성)

  • Yun, Jin-Uk;Yang, Tae-Hun;An, Gang-Ho;Choe, Man-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.5
    • /
    • pp.660-665
    • /
    • 2001
  • Ultrafine particles have been widely used in many high technology industrial areas. The spherical nonagglomerated and uniform nanometer-size SiO$_2$particles are synthesized by the direct injection of TEOS(Tetraethyorthosilicate) using electro-hydrodynamic spraying method. Electro-hydrodynamic spraying can generate submicron-size TEOS droplets having high electric charges by applying a high electric field between the liquid injection nozzle and the reaction tube. These TEOS droplets are evaporated, and thermally decomposed or oxidized to produce nanometresized SiO$_2$particles in the reaction tube. Spherical, nonagglomerated and ultrafine particles are generated in various conditions and examined by using SEM and SMPS. As the total gas flow rate in the furnace changes from 1.5 lpm, the mean diameter of SiO$_2$particle decreases from 120 nm to 68 nm. The synthesized particle charging fractions are also investigated.

Study on Reflected Pressure in a Shock Tunnel According to the Size of a Nozzle Throat (충격관 터널의 노즐목 크기에 따른 반사압력특성 분석)

  • Lee, Jong Kook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.6
    • /
    • pp.479-487
    • /
    • 2015
  • In a reflected shock tunnel, stagnation conditions of a nozzle are determined by the flow behind a reflected shock. When calculating the flow behind the reflected shock, unlike a shock tube, the flow leakage through the nozzle is to be considered. The analytical studies were done to find out the characteristics of the stagnation conditions of the nozzle with various nozzle throat size. Experiments and numerical simulations were also carried out for further understanding of the flow leakage effects. It was found that the nozzle stagnation pressure was diminished by the increase of the size of the nozzle throat. It was also found that the steady pressure in the stagnation were maintained well at the area ratio of the driven tube to the nozzle throat is 4.5.

Detection of Simulative Foreign Body Using three Dimensional Reconstruction Technique, Introduction and Application (삼차원 재건 기술을 이용한 모의 이물 탐색)

  • Yoo, Young Sam;Kim, Dong Won
    • Korean Journal of Bronchoesophagology
    • /
    • v.17 no.1
    • /
    • pp.40-45
    • /
    • 2011
  • Background and Objectives Detailed information about the impacted esophageal foreign body is essential for safe extraction. Three dimensional reconstruction technique was applied to know shape, size and location of the simulative foreign bodies of stone, hyoid bone and endotracheal tube. Materials and Methods Submandibular gland stone, hyoid bone and endotracheal tube were used to simulate impacted foreign bodies. Axial CT, multi-planar reconstruction, volume of interest and virtual camera of Rapidia software were used to get information about the simulative foreign bodies from CT data. Shape and size were compared with the real materials. Exact locations were measured in appropriate modes of Rapidia. Results Shapes of the simulative foreign bodies matched well with the real materials. Size and location could be measured in various modes with some variable results. Conclusion 3D technique can be applied to get information about the simulative foreign bodies. This technique could be applied to the impacted esophageal foreign body.

  • PDF

A Control of Ice Packing Factor of Ice Slurry in a Pipe using IPF Controller (IPF 조절기를 이용한 배관내 아이스 슬러리의 빙충전율 제어)

  • Kwon, Jae-Sung;Lee, Yoon-Pyo;Yoon, Seok-Mann
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1105-1110
    • /
    • 2008
  • An experimental study was performed to control Ice Packing Factor (IPF) of ice slurry in a pipe in a real time. This paper presented the concept that IPF can be adjusted by the amount of the solution contained to ice slurry. Based on this concept, we designed IPF controller consisting of the outlet tube providing ice slurry and the upper tube discharging only a solution through holes, and investigated the technical validity and efficiency of the controller experimentally. As a result, the original proposed IPF controller could not control IPF of ice slurry in a pipe. This is because an ice of ice slurry was drained out into not only the outlet but also the upper of the controller due to the size of the holes relatively large compared to the ice particle. Therefore, we changed the hole size of IPF controller surface using fine meshes and then, observed that IPF in a pipe was increased by $4{\sim}7$ percent when the hole size was $80{\mu}m$ and less.

  • PDF

Particle Size Distribution Analysis of Mineral Dust in Polar Snow Using a Coulter Counter (쿨터카운터(Coulter Counter)를 이용한 극지 눈시료 중 광물성 먼지의 입자크기분포 분석)

  • Kang, Jung-Ho;Hwang, Heejin;Hong, Sang Bum;Hur, Soon Do
    • Ocean and Polar Research
    • /
    • v.36 no.4
    • /
    • pp.319-326
    • /
    • 2014
  • Mineral dust in the polar snow plays an important role both in the climate system of the Earth and in global biogeochemical cycles. Analysis of the concentration and the particle size distribution of mineral dust has been carried out in the snow from the Antarctic surface snow and the Greenland snowpit. Among the various particle size determination techniques, a Multisizer 3 Coulter Counter in a class 100 clean bench counted all particles between 1.1 and $30.0{\mu}m$ with a $50{\mu}m$ aperture tube. The aperture tube size, the concentration of electrolytes and the accuracy of the particle size distribution were determined in this study. The number concentrations from the Antarctic surface snow were 81,843 particles $mL^{-1}$, but those from the Greenland snowpit were 10,666 particles $mL^{-1}$. In the volume distribution, the distributions of mineral dust in both the Antarctic surface snow and the Greenland snowpit showed lognormal distribution in the size interval 1.1 to $6.0{\mu}m$ with the mode, 3.562 and $3.836{\mu}m$, respectively. The analysis technique using a coulter counter for mineral dust could be used for reconstructing paleoclimates from polar ice cores.

Measurement of Average Pool Boiling Heat Transfer Coefficient on Near-Horizontal Tube (수평 가까운 튜브 표면의 평균 풀비등 열전달계수의 측정)

  • Kang, Myeong-Gie
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.1
    • /
    • pp.81-88
    • /
    • 2014
  • An experimental study is performed to obtain an average heat transfer coefficient around the perimeter of a near horizontal tube. For the test a stainless steel tube of 50.8 mm diameter submerged in water at atmospheric pressure is used. Both subcooled and saturated pool boiling conditions are considered and the inclination angle of the tube is changed from the horizontal position to $9^{\circ}$ in steps of $3^{\circ}$. In saturated water, the local boiling heat transfer coefficient at the azimuthal angle of $90^{\circ}$ from the tube bottom can be regarded as the average of the coefficients regardless of the tube inclination angles. However, when the water is subcooled the location for the average heat transfer coefficient depends on the inclination angle and the heat flux. It is explained that the major mechanisms changing the heat transfer are closely related with the intensity of the liquid agitation and the generation of big size bubbles through bubble coalescence.

MODAL TESTING AND MODEL UPDATING OF A REAL SCALE NUCLEAR FUEL ROD

  • Park, Nam-Gyu;Rhee, Hui-Nam;Moon, Hoy-Ik;Jang, Young-Ki;Jeon, Sang-Youn;Kim, Jae-Ik
    • Nuclear Engineering and Technology
    • /
    • v.41 no.6
    • /
    • pp.821-830
    • /
    • 2009
  • In this paper, modal testing and finite element modeling results to identify the modal parameters of a nuclear fuel rod as well as its cladding tube are discussed. A vertically standing full-size cladding tube and a fuel rod with lead pellets were used in the modal testing. As excessive flow-induced vibration causes a failure in fuel rods, such as fretting wear, the vibration level of fuel rods should be low enough to prevent failure of these components. Because vibration amplitude can be estimated based on the modal parameters, the dynamic characteristics must be determined during the design process. Therefore, finite element models are developed based on the test results. The effect of a lumped mass attached to a cladding tube model was identified during the finite element model optimization process. Unlike a cladding tube model, the density of a fuel rod with pellets cannot be determined in a straightforward manner because pellets do not move in the same phase with the cladding tube motion. The density of a fuel rod with lead pellets was determined by comparing natural frequency ratio between the cladding tube and the rod. Thus, an improved fuel rod finite element model was developed based on the updated cladding tube model and an estimated fuel rod density considering the lead pellets. It is shown that the entire pellet mass does not contribute to the fuel rod dynamics; rather, they are only partially responsible for the fuel rod dynamic behavior.

Axial compressive residual ultimate strength of circular tube after lateral collision

  • Li, Ruoxuan;Yanagihara, Daisuke;Yoshikawa, Takao
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.396-408
    • /
    • 2019
  • The tubes which are applied in jacket platforms as the supporting structure might be collided by supply vessels. Such kind of impact will lead to plastic deformation on tube members. As a result, the ultimate strength of tubes will decrease compared to that of intact ones. In order to make a decision on whether to repair or replace the members, it is crucial to know the residual strength of the tubes. After being damaged by lateral impact, the simply supported tubes will definitely loss a certain extent of load carrying capacity under uniform axial compression. Therefore, in this paper, the relationship between the residual ultimate strength of the damaged circular tube by collision and the energy dissipation due to lateral impact is investigated. The influences of several parameters, such as the length, diameter and thickness of the tube and the impact energy, on the reduction of ultimate strength are investigated. A series of numerical simulations are performed using nonlinear FEA software LS-DYNA. Based on simulation results, a non-dimensional parameter is introduced to represent the degree of damage of various size of tubes after collision impact. By applying this non-dimensional parameter, a simplified formula has been derived to describe the relationship between axial compressive residual ultimate and lateral impact energy and tube parameters. Finally, by comparing with the allowable compressive stress proposed in API rules (RP2A-WSD A P I, 2000), the critical damage of tube due to collision impact to be repaired is proposed.