• Title/Summary/Keyword: Tube Hydroforming Technology

Search Result 127, Processing Time 0.022 seconds

Development of Tube Hydroforming for a Tail Pipe Using FE Analysis (유한요소해석을 이용한 테일파이프의 튜브하이드로포밍 공정 개발 연구)

  • Han, S.S.
    • Transactions of Materials Processing
    • /
    • v.25 no.3
    • /
    • pp.176-181
    • /
    • 2016
  • The exhaust tail pipe is the only visible part of the exhaust system on a vehicle. The conventional way to make the tail pipe is welding after stamping. There are various problems that occur during the stamping of stainless steel sheets such as scratching and local fracture. Problems during welding can also occur due to poor weldability. Tube hydroforming can be a solution, which eliminates these problems. The current study deals with the development of tube hydroforming for a vehicle tail pipe using finite element analysis for a free-feeding method. The current study focuses on the development of a proper load path for the tail pipe hydroforming and how bending influences the subsequent processing steps. The FE analysis results were compared with experimental results. This study shows the importance of bending and the necessity of considering bending when performing a tube hydroforming analysis.

A Study on Radiator Support Member Manufacturing Technology by Hydroforming (Hydroforming을 이용한 Radiator Support Member의 제조기술에 관한 연구)

  • Sohn S. M.;Lee M. Y.;Lee S. Y.;Jo Y. J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.44-48
    • /
    • 2001
  • Tube hydroforming technology has increased dramatically, mainly by automotive industry in europe and the americas. It is required tube formability, optimized with regard to tribological factors and specially designed die and presses. In this process has many important parameters as expansion ratio of a tube, axial feeding, internal pressure and preforming low pressure. The following paper discusses to combine forming factors and expectation of manufacture problem by hydroforming of automotive radiator support member.

  • PDF

Forming Analysis and Formability Evaluation for Aluminum Tube Hydroforming (알루미늄 튜브 하이드로포밍 성형 해석 및 성형성 평가)

  • Lim H. T.;Kim H. Y.;Kim H. J.;Lee D. J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.243-246
    • /
    • 2005
  • A tube hydroformability testing system was designed and manufactured to observe the forming steps and to provide arbitrary combination of internal pressure and axial feed. The forming limit diagram of an aluminum tube was obtained from the free bulge test and the T-shape forming test using this system, giving the criteria for predicting failure in the hydroforming process. The hydroformability of aluminum tube according to different conditions of a prebending process was discussed, based on the finite element analysis and the forming limit test. The effects of 2D and 3D prebending on the tube hydroforming process of an automotive failing arm were evaluated and compared with each other.

  • PDF

FE Analysis of Hydroforming Process for Flange Forming (액압 성형 공정 시 플랜지부 형성을 위한 FE 해석)

  • Choi, M.K.;Joo, B.D.;Lee, S.M.;Lee, H.J.;Moon, Y.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.177-180
    • /
    • 2009
  • Tube hydroforming provides a number of advantages over the conventional stamping process, including fewer secondary operations, weight reduction, assembly simplification, adaptability to forming of complex structural components and improved structural strength and stiffness. A hydroformed vehicle body component has an attachment flange or the like-formed as an integral part of the hydroforming process. For a given flange shape, a parting plane for the dies is established relative to which the various surfaces of the flange shape, in cross section, have no significant reverse curvature. This study shows analysis results that form the flanged tubular parts in the hydroforming. The thickness variations and defects during the hydroforming for flange forming could be analyzed by FE analysis. FE analysis was performed by LS-DYNA/Dynaform 5.5.

  • PDF

Enhancement of Hydroformability Through the Reduction of the Local Strain Concentration (국부적 변형 집중 저감을 통한 액압 성형성 개선연구)

  • Shin, S.G.R.;Joo, B.D.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.23 no.5
    • /
    • pp.317-322
    • /
    • 2014
  • Bursting during tube hydroforming is preceded by localized necking. The retardation of the initiation of necking is a means to enhance hydroformability. Since high strain gradients occur at the necking sites, a decrease in local strain gradients is an effective way to retard the initiation of necking. In the current study, the expansion at potential necking sites was intentionally restricted in order to reduce the strain gradient at potential necking sites. From the strain distribution obtained from FEM, it is possible to determine strain concentrated zones, which are the potential necking sites. Prior to the hydroforming of a trailing arm, an incompressible material(such as lead) is attached to the tube where the strain-concentrated zone would contact the die. Due to the incompressibility of lead, the tube expansion is locally restricted, and the resultant strain extends to adjacent regions of the tube during hydroforming. After the first stage of hydroforming, the lead is removed from the tube, and the hydroforming continues to the final targeted shape without any local restriction. This method was successfully used to fabricate a complex shaped automotive trailing arm that had previously failed during traditional hydroforming fabrication.

Evaluation of Formability on Hydroformed Part for Automobile Based on Finite Element Analysis (유한요소해석에 의한 자동차용 관재액압성형 부품의 성형성 평가)

  • Song, Woo-Jin;Heo, Seong-Chan;Ku, Tae-Wan;Kim, Jeong;Kang, Beom-Soo
    • Transactions of Materials Processing
    • /
    • v.17 no.1
    • /
    • pp.52-58
    • /
    • 2008
  • Tube hydroforming process is generally consisted with pre-bending, preforming and hydroforming processes. Among forming defects which may occur in tube hydroforming such as buckling, wrinkling and bursting, the wrinkling and bursting by local instability under excessive tensile stress mode were mainly caused by thinning phenomenon in the manufacturing process. Thus the accurate prediction and suitable evaluation of the thinning phenomenon play an important role in designing and producing the successfully hydroformed parts without any failures. In this work, the formability on hydroformed part for automobile, i.e. engine cradle, was evaluated using finite element analysis. The initial tube radius, loading path with axial feeding force and internal pressure, and preformed configuration after preforming process were considered as the dominant process parameters in total tube hydroforming process. The effects on these process parameters could be confirmed through the numerical experiments with respect to several kinds of finite element simulation conditions. The degree of enhancement on formability with each process parameters such as initial tube radius, loading path and preform configuration were also compared. Therefore, it is noted that the evaluation approach of the formability on hydroformed parts for lots of industrial fields proposed in this study will provide one of feasible methods to satisfy the increasing practical demands for the improvement of the formability in tube hydroforming processes.

Warm Hydroforming Characteristics of High Strength Aluminum Tubes (고강도 알루미늄 튜브의 온간 하이드로포밍 특성)

  • 이문용;강창룡;이상용
    • Transactions of Materials Processing
    • /
    • v.13 no.5
    • /
    • pp.403-408
    • /
    • 2004
  • Hydroformability of 6061 and 7075 aluminum tube materials was studied by warm hydroforming experiments. A special tooling and heating system was designed and manufactured in order to perform warm hydroforming between room temperature and $300^{\circ}C$. The control of tube temperature for warm hydroforming was made by the control of temperature of oil medium. Warm hydroformability was analyzed by tube appearances, tube elongation and hardness values. Hydroforming characteristics of 6061 and 7075 tubes showed different temperature dependence between room temperature and $300^{\circ}C$. The difference in hydroformabilities of 6061 and 7075 at elevated temperatures was interpreted by the different sensitivity to dynamic strain aging of both aluminum materials.

Durability Based Design for Hydroforming process of Rear Suspension (내구성을 고려한 후륜현가 장치의 하이드로포밍 공정 설계)

  • Kim, H.Y.;Oh, I.S.;Go, J.M.;Lee, D.J.;Cho, W.K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.269-272
    • /
    • 2006
  • The hydroforming processing is a relatively new technology in comparison with conventional stamping process. The hydroforming processing makes torsion beam in rear suspension of automobile. The durability of torsion beam is very important characteristic that operate in an automobile. In order to optimize the hydroforming process and satisfy the durability, the hydroforming simulation which could control an axial compression and high internal pressure with computer simulation has to be operated. This paper is about an optimum design to improve the kinematic and compliance characteristics of a torsion-beam of suspension system. The result from finite element analysis shows that the forming and the durability are optimized. If there is effect of First pressure in hydroforming processing that gap is in the die tool, the prototype of tube is not satisfied on the durability test.

  • PDF

Optimization of tube hydroforming process by using fuzzy expert system (퍼지 전문가 시스템을 이용한 강관 하이드로포밍의 성형성 예측에 관한 연구)

  • Park K. S.;Kim D. K.;Lee D. H.;Moon Y. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.194-197
    • /
    • 2004
  • In the tube hydroforming process, a tube is placed into the die cavity and the ends of the tube are sealed by fixing the axial cylinder piston into the ends. Then the tube is pressurized with a hydraulic fluid and simultaneously the axial cylinders move to feed the material into the expansion zone. Therefore, the quantitative relationship between process parameters such as internal pressure and feeding amount and hydroformabillity, is hard to establish because of their high complexity and many unknown factors. In this study, the empirical and the quantitative relationship between process parameters and hydroformabillity are analyzed by fuzzy rules. Fuzzy expert system is an advanced expert system which uses fuzzy rule and approximate reasoning. Many process parameters are converted to the quantitative relationship by use of approximate reasoning of fuzzy expert system. The comparison between experimentally measured hydroformabillity from hydroforming experiments and the predicted values by fuzzy expert system shows a good agreement.

  • PDF

Analysis of Hydroforming Process and Forming Limit Prediction by FEM (유한요소법을 적용한 하이드로포밍 공정 해석 및 성형한계 예측)

  • Kim J.;Kang S. J.;Kang B. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.36-39
    • /
    • 2001
  • Tubular hydroforming has attracted increased attention in the automotive industry recently. In this study, a professional finite element program for analysis and design of tube hydroforming processes has been developed, called HydroFORM-3D, which is based on a rigid-plastic model. With the developed program several hydroforming processes such as a tee extrusion, an automotive rear axle housing and lower arm are analyzed and designed. And also, the Oyane's ductile fracture integral I was calculated from the histories of stress and strain according to every element and then the forming limit of the hydroforming process could be evaluated. The pediction of the bursting failure and the plastic deformation during typical hydroforming processes shows to be reasonable so that this approach can be extended to other various tube hydroforming processes.

  • PDF