• Title/Summary/Keyword: Tube Furnace

Search Result 206, Processing Time 0.029 seconds

Studies on the Combustion Characteristics and NO Distribution in the Pulverized Coal Fired Boiler (대용량 미분탄 보일러의 연소특성 및 NO 분포 특성 연구)

  • Park, Ho-Young;Kim, Young-Joo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.5
    • /
    • pp.552-559
    • /
    • 2008
  • Three dimensional numerical analysis were performed to investigate the combustion characteristics in a tangentially fired pulverized coal boiler. The predicted values at the outlet of economizer for the gas temperature, O$_2$, NO, CO were been compared with the measured data. By using the actual operating conditions of the power plant, the distribution of velocity, gas temperature, O$_2$, CO, CO$_2$ and NO as well as the particle tracking in the boiler were investigated. Throughout the present study, the non-uniform distribution of flue gas temperature in front of the final superheater might be resulted from the residual swirl flow in the upper furnace of the boiler. The present analysis on non-uniform distribution of the gas temperature could provide the useful information to prevent the frequent tube failure from happening in the final superheater of the tangentially coal-fired boiler.

Microstructural Evolution in the Unidirectional Heat Treatment of Cu-35%Sn Alloys (Cu-35%Sn 합금의 일방향 열처리에서 출현하는 미세조직)

  • Choi, K.J.;Jee, T.G.;Park, J.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.16 no.6
    • /
    • pp.320-328
    • /
    • 2003
  • A specimen of Cu-35%Sn alloy has been subjected to the unidirectional heat treatment in an attempt to examine the evolution of microstructures under varying thermal conditions. The specimen was cast in the form of a cylinder 10 mm in diameter and 200 mm in length, which was then installed in the temperature gradient field established inside a vertical tube furnace. The furnace temperature was adjusted to make the upper part at $750^{\circ}C$ and bottom end part at $300^{\circ}C$ of the specimen. The experiment was terminated by dropping it into water after the 30 minutes holding at given temperature. By the rapid cooling, the high temperature phases, ${\gamma}$ and ${\zeta}$, were retained at ambient temperature with some of ${\gamma}$ phase transformed to ${\varepsilon}$ phase, especially at the grain boundaries of ${\gamma}$ phase. The presence of ${\varepsilon}$ phase was found to determine the nature of phase transformations of the ${\zeta}$ phase undergoes upon cooling. In the close area of the ${\varepsilon}$ phase, ${\varepsilon}$ phase grew separately out of ${\zeta}$, and adds to the preexisting ${\varepsilon}$ whereas in areas away from ${\varepsilon}$, both ${\delta}$ and ${\varepsilon}$ grew simultaneously out of ${\zeta}$, and formed a lamella eutectoid structure. The transformation to ${\delta}$ was found to occur only in slow cooling. The hardness on each phase showed that the retained phases, ${\gamma}$ and ${\zeta}$, could be plastically deformed without brittle fracture while the phases, ${\varepsilon}$ and ${\delta}$, were too brittle to be deformed.

Synthesis of SiC Nanoparticles by a Sol-Gel Process (나노 실리카와 카본블랙이용 탄화열 반응으로 나노 SiC 합성 및 특성)

  • Jeong, Kwang-Jin;Bae, Dong-Sik
    • Korean Journal of Materials Research
    • /
    • v.23 no.4
    • /
    • pp.246-249
    • /
    • 2013
  • Nano-sized ${\beta}$-SiC nanoparticles were synthesized combined with a sol-gel process and a carbothermal process. TEOS and carbon black were used as starting materials for the silicon source and carbon source, respectively. $SiO_2$ nanoparticles were synthesized using a sol-gel technique (Stober process) combined with hydrolysis and condensation. The size of the particles could be controlled by manipulating the relative rates of the hydrolysis and condensation reactions of tetraethyl orthosilicate (TEOS) within the micro-emulsion. The average particle size and morphology of synthesized silicon dioxide was about 100nm and spherical, respectively. The average particles size and morphology of the used carbon black powders was about 20nm and spherical, respectively. The molar ratio of silicon dioxide and carbon black was fixed to 1:3 in the preparation of each combination. $SiO_2$ and carbon black powders were mixed in ethanol and ball-milled for 12 h. After mixing, the slurries were dried at $80^{\circ}C$ in an oven. The dried powder mixtures were placed in alumina crucibles and synthesized in a tube furnace at $1400{\sim}1500^{\circ}C$ for 4 h with a heating rate of $10^{\circ}C$/min under flowing Ar gas (160 cc/min) and furnace cooling down to room temperature. SiC nanoparticles were characterized by XRD, TEM, and SAED. The XRD results showed that high purity beta silicon carbide with excellent crystallinity was synthesized. TEM revealed that the powders are spherical shape nanoparticles with diameters ranging from 15 to 30 nm with a narrow distribution.

Heat Treatment of Cu0.9In0.7Ga0.3Se2 Powder Layer with a Mixture of Selenium and Ceramic Powder (셀레늄과 세라믹 혼합분말을 사용한 Cu0.9In0.7Ga0.3Se2 분말층의 소결거동 연구)

  • Song, Bong-Geun;Hwang, Yoonjung;Park, Bo-In;Lee, Seung Yong;Lee, Jae-Seung;Park, Jong-Ku;Lee, Doh-Kwon;Cho, So-Hye
    • Current Photovoltaic Research
    • /
    • v.2 no.3
    • /
    • pp.115-119
    • /
    • 2014
  • $Cu(In,Ga)Se_2$ (CIGS) thin films have been used as a light absorbing layer in high-efficiency solar cells. In order to improve the quality of the CIGS thin film, often selenization step is applied. Especially when the thin film was formed by non-vacuum powder process, selenization can help to induce grain growth of powder and densification of the thin film. However, selenization is not trivial. It requires either the use of toxic gas, $H_2Se$, or expensive equipment which raises the overall manufacturing cost. Herein, we would like to deliver a new, simple method for selenization. In this method, instead of using a costly two-zone furnace, use of a regular tube furnace is required and selenium is supplied by a mixture of selenium and ceramic powder such as alumina. By adjusting the ratio of selenium vs. alumina powder, selenium vaporization can be carefully controlled. Under the optimized condition, steady supply of selenium vapor was possible which was evidently shown by large grain growth of CIGS within a thin powder layer.

An Experimental Study on the Ensuring the Fire Resistance Performance of Non-Refractory Coating CFT (무내화피복 CFT 공법의 내화성능 확보를 위한 실험적 연구)

  • Lee, Ji-Hwan;Han, Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.3
    • /
    • pp.273-280
    • /
    • 2015
  • In this study, tests were carried out to find out a method to ensure the fire resistance performance of high-performance non-refractory coating CFT columns. For the high performance concrete fabrication with 100MPa, blast furnace slag(BS) and steel and nylon fibers were used. It was found that the partial replacement with BS improved the fire resistance performance of the concrete. Based on the results of lab tests, the large fire test was conducted. For this test, the CFTs with the size of ${\phi}500{\times}4,200mm$ and the reinforcement of SS 400 steel were prepared and they were subjected to a loading condition. It was found that as the level of load increased, the level of fire resistance decreased. For example, In with the loading condition of 2000kN the CFT could resist the fire for over 240 minutes, whereas, with the loading condition of 3,000kN and 4000kN applying to equivalent CFTs, the resisting time against fire were 184 minutes, and 120 minutes, respectively.

Reduction behavior of Zn, Pb, Cl, Fe, Cu and Cd compounds in EAF dust with carbon (탄소에 의한 전기로 분진 중 Zn, Pb, Cl, Fe, Cu 및 Cd화합물의 환원반응)

  • 이재운;김영진;서성규;이광학;김영홍
    • Resources Recycling
    • /
    • v.9 no.4
    • /
    • pp.3-15
    • /
    • 2000
  • Reduction of Electric Arc Furnace dust with carbon (graphite) was studied at the temperature range of $800^{\circ}C$ to $1100^{\circ}C$ in Ar gas atmosphere. The briquetted dust with graphite powder was heated in a vertical tube furnace for given reaction time and Quenched in Ar gas atmosphere. It was found that initially the reduction of Zn was chemically controlled and the activation energy was about 120 KJ/mole. Because the almost all of Pb was removed with Cl in the form of $PbCl_2$, it is considered that Pb is removed by chloride reduction. Cu was vaporized as a chloride up to 30% of its original content, but the remaining of Cu would be accumulated with the reduced iron. and also, Cd was removed completely within 15 min. at $1000^{\circ}C$.

  • PDF

Optimization of ZnO-based transparent conducting oxides for thin-film solar cells based on the correlations of structural, electrical, and optical properties (ZnO 박막의 구조적, 전기적, 광학적 특성간의 상관관계를 고려한 박막태양전지용 투명전극 최적화 연구)

  • Oh, Joon-Ho;Kim, Kyoung-Kook;Song, Jun-Hyuk;Seong, Tae-Yeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.42.2-42.2
    • /
    • 2010
  • Transparent conducting oxides (TCOs) are of significant importance for their applications in various devices, such as light-emitting diodes, thin-film solar cells, organic light-emitting diodes, liquid crystal displays, and so on. In order for TCOs to contribute to the performance improvement of these devices, TCOs should have high transmittance and good electrical properties simultaneously. Sn-doped $In_2O_3$ (ITO) is the most commonly used TCO. However, indium is toxic and scarce in nature. Thus, ZnO has attracted a lot of attention because of the possibility for replacing ITO. In particular, group III impurity-doped ZnO showed the optoelectronic properties comparable to those of ITO electrodes. Al-doped ZnO exhibited the best performance among various doped ZnO films because of the high substitutional doping efficiency. However, in order for the Al-doped ZnO to replace ITO in electronic devices, their electrical and optical properties should further significantly be improved. In this connection, different ways such as a variation of deposition conditions, different deposition techniques, and post-deposition annealing processes have been investigated so far. Among the deposition methods, RF magnetron sputtering has been extensively used because of the easiness in controlling deposition parameters and its fast deposition rate. In addition, when combined with post-deposition annealing in a reducing ambient, the optoelectronic properties of Al-doped ZnO films were found to be further improved. In this presentation, we deposited Al-doped ZnO (ZnO:$Al_2O_3$ = 98:2 wt%) thin films on the glass and sapphire substrates using RF magnetron sputtering as a function of substrate temperature. In addition, the ZnO samples were annealed in different conditions, e.g., rapid thermal annealing (RTA) at $900^{\circ}C$ in $N_2$ ambient for 1 min, tube-furnace annealing at $500^{\circ}C$ in $N_2:H_2$=9:1 gas flow for 1 hour, or RTA combined with tube-furnace annealing. It is found that the mobilities and carrier concentrations of the samples are dependent on growth temperature followed by one of three subsequent post-deposition annealing conditions.

  • PDF

Comparative Study of Char Burn-Out and NOx Emissions in O2/N2 and O2/CO2 environments (순산소 분위기에서 촤 연소 및 질소산화물 배기특성 비교)

  • Lee, Chun-Sung;Kim, Seong-Gon;Lee, Byoung-Hwa;Chang, Young-June;Jeon, Chung-Hwan;Song, Ju-Hun
    • Journal of Energy Engineering
    • /
    • v.20 no.3
    • /
    • pp.191-199
    • /
    • 2011
  • The char burn-out and NOx emissions from sub-bituminous coal were investigated in drop tube furnace under $O_2/N_2$ and $O_2/CO_2$ environments with different $O_2$ concentrations of 12, 21 and 31%. Results show that the char burn-out rate is faster as $O_2$ concentration increases higher and char burn-out rate under $O_2/CO_2$ decreases due to the lower oxygen diffusion into coal surface through the $CO_2$ rich boundary layer. NO concentration increases with increasing $O_2$ concentration, but declines at $O_2$ concentration of 31%. Meanwhile, NO emission indexes decreases monotonically with increasing $O_2$ concentration, which indicates that more NO reduction occurs with higher $O_2$ concentration probably due to greater HCN formation. For all conditions of $O_2$ concentration, the NO concentration under $O_2/N_2$ maintains higher than those of $O_2/CO_2$ due to presence of thermal NO.

A study on the black core formation of artificial lightweight aggregates at various sintering atmospheres (인공경량골재의 소성조건이 블랙코어에 미치는 영향)

  • Kim, Yoo-Taek;Ryu, Yu-Gwang;Jang, Chang-Sub;Lee, Ki-Gang;Kang, Seung-Gu;Kim, Jung-Hwan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.6
    • /
    • pp.318-323
    • /
    • 2009
  • The lightweight aggregates made of bottom ash (70 wt%) and dredged soil (30 wt%) were prepared to investigate the property differences at various sintering atmospheres. The green aggregates were sintered at $1150^{\circ}C$ and $1200^{\circ}C$ with oxidized, neutralized and reduced atmospheres. The aggregates sintered with oxidized atmosphere showed a clear border between shell and black core area. However, the aggregates sintered with a reduced atmosphere showed only black core area in the entire cross-section of the aggregates. The black core area of the aggregates sintered with a neutralized atmosphere increased with increasing $N_2$ gas flow rates. It was determined that the sintering atmosphere was similar to that of rotary kiln when the CO gas flow was 100 cc/min to make a reduced atmosphere in tube furnace. The water absorption rates of both aggregates from tube furnace with reduced atmosphere and rotary kiln were very similar to each other.

Experimental Investigation into the Combustion Characteristics on the Co-firing of Biomass with Coal as a Function of Particle Size and Blending Ratio (바이오매스(우드펠릿) 혼소율 및 입자크기에 따른 연소 특성에 관한 연구)

  • Sh, Lkhagvadorj;Kim, Sang-In;Lim, Ho;Lee, Byoung-Hwa;Kim, Seung-Mo;Jeon, Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.1
    • /
    • pp.31-37
    • /
    • 2016
  • Co-firing of biomass with coal is a promising combustion technology in a coal-fired power plant. However, it still requires verifications to apply co-firing in an actual boiler. In this study, data from the Thermogravimetric analyzer(TGA) and Drop tube furnace(DTF) were used to obtain the combustion characteristics of biomass when co-firing with coal. The combustion characteristics were verified using experimental results including reactivity from the TGA and Unburned carbon(UBC) data from the DTF. The experiment also analyzed with the variation of the biomass blending ratio and biomass particle size. It was determined that increasing the biomass blending ratio resulted in incomplete chemical reactions due to insufficient oxygen levels because of the rapid initial combustion characteristics of the biomass. Thus, the optimum blending condition of the biomass based on the results of this study was found to be 5 while oxygen enrichment reduced the increase of UBC that occurred during combustion of blended biomass and coal.