• Title/Summary/Keyword: Tsushima warm current

Search Result 213, Processing Time 0.023 seconds

Relative Sea-level Change Around the Korean Peninsula

  • Jeon, Dong-Chull
    • Ocean and Polar Research
    • /
    • v.30 no.4
    • /
    • pp.373-378
    • /
    • 2008
  • Long-term tide-gauge data from around the Korean Peninsula were reanalyzed. Both the coastal water and the open sea surrounding the Korean Peninsula appeared to have been influenced by global warming. The long-term change in relative sea levels obtained from tidal stations showed a general rising trend, especially near Jeju Island. It is proposed that global warming may have caused shifting of the path of the Kuroshio branch (Tsushima Warm Current) toward Jeju Island, causing a persistent increase in the water levels along the coast of the island over the last few decades.

Biotope Analysis of the Total Benthic Foraminiferal Assemblage off the Southeastern Coast, Korea (한국남동해 저서유공충의 생물장)

  • 장순권
    • 한국해양학회지
    • /
    • v.21 no.3
    • /
    • pp.136-145
    • /
    • 1986
  • Biotope analysis(UPGM) of the data on the total benthic foraminferal assemblage (Kim and Han, 1982) collected from the southeastern sea off the Korean Peninsula shows that foraminiferal assemblages are related to the water masses prevailing in the study area. South Proper facies is governed by the Tsushima Warm Current, and Southern Deep facies is influenced by the cold water mass moved down along the bottom. Northern Nearshore facies is governed by the North Korea Cold Current, and North Proper facies is affected by the North Korea Cold Current and Japan Sea Proper Water. It is also evident that the upper part of the study area is under the influence of the North Korea Cold Current rather than the East Korea Warm Current which flows northward along/or off the right side of the study area. Planktonic foraminiferal occurrence also supports this biotope analysis.

  • PDF

Studies on the Fishery Biology of Pomfrets, Pampus spp. in the Korean Waters 5. Distribution and Fishing Condition (한국근해 병어류의 자원생물학적 연구 5. 분포와 어황)

  • CHO Kyu Dae;KIM Jeong Chang;CHOE Yong Kyu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.22 no.5
    • /
    • pp.294-305
    • /
    • 1989
  • Basedon statistical data of pomfret (Pampus spp.) catches by the stow net during $1970\~1985$, the distribution and migration of pomfrets and fishing conditions were investigated in relation to oceanographic conditions, in the East China Sea and the Yellow Sea. The main fishing grounds of Pomfrets were formed around the Great Yangtze Sand Bank which locates between the Cheju Island and the mouth of the Yangtze River. Its area occupied only 11 percent of all fishing grounds, and about 70 percent of total catch was found there. The coefficient of variation(CV) in catch was below 0.01 in the whole fishing grounds and that of tile main fishing grounds (14 fishing areas) was $0.001\~0.003$. This area was indicated markedly by the inflow of Yellow Sea Warm Current from spring to autumn, and this mixing area which formed the oceanic front among the China Continental Shelf Water, the Yellow Sea Bottom Cold Water and the Tsushima Warm Current. The pomfrets migrates to south-north according to the expansion and contraction of the Tsushima Warm Current including the Yellow Sea Warm Current and the Yellow Sea Bottom Cold Water. Therefore, it migrates to north of the Yellow Sea in summer and to southern part of the East China Sea in winter. The most frequent range of the water type for high catch was $10\~12^{\circ}C$ in temperature and $32.4\~33.4\%_{circ}$ in salinity. The ranges was occupied more than 70 percent of total catch on fishing season. The frequency range of the water type was not different between the abundant fishing periods and the poor fishing periods in terms of the maximum catches.

  • PDF

Evidence of Vertical Mixing Caused by High Frequency Internal Waves along the Eastern Coast of Korea

  • Han, In-Seong;Lee, Ju;Jang, Lee-Hyun;Suh, Young-Sang;Seong, Ki-Tack
    • Fisheries and Aquatic Sciences
    • /
    • v.11 no.1
    • /
    • pp.41-49
    • /
    • 2008
  • Internal waves and internal tides occur frequently along the eastern coast of Korea. During the spring-tide period in April 2003, the East Korean Warm Current (EKWC) flowed near the Korean East Coast Farming Forecast System (KECFFS; a moored oceanographic measurement system), creating a strong thermocline at the intermediate layer. Weakened stratification and well-mixed water appeared frequently around the KECFFS, with duration of approximately 1 day. The results suggest the following scenario. Baroclinic motion related to the internal tide generated high frequency internal waves around the thermocline. The breaking of those waves then created turbulence around the thermocline. After well-mixed water appeared, a current component with perpendicular direction to the EKWC appeared within the inertial period. The change in stratification around the KECFFS locally broke the geostrophic balance as a transient state. This local vertical mixing formed an ageostrophic current within the inertial period.

Patterns of Zooplankton Distribution as Related to Water Masses in the Korea Strait during Winter and Summer (여름철 및 겨울철 수괴에 따른 대한해협의 동물플랑크톤 분포 양상)

  • Jang, Min-Chul;Baek, Seung-Ho;Jang, Pung-Guk;Lee, Woo-Jin;Shin, Kyoung-Soon
    • Ocean and Polar Research
    • /
    • v.34 no.1
    • /
    • pp.37-51
    • /
    • 2012
  • We investigated the distribution and species composition of zooplankton in relation to hydrographical characteristics in the Korea Strait during the winter (February) and summer (July) of 2009. Satellite images of sea surface temperatures and in situ CTD data showed that the southeastern water zone (St3-5) off Jeju Island was strongly influenced by the Tsushima Current during both the winter and summer, whereas the Changjiang Diluted Water, characterized as water with relatively low salinity, was evident in the coastal waters of Jeju Island during the summer. During winter, zooplankton abundance was significantly higher than in the summer, with dominance by copepods, ostracods, siphonophorans, appendicularians, and nauplii. In both seasons, copepods represented >70% of the total zooplankton population. Calanus sinicus, a large calanoid copepod, was dominant in near the coast, and that may be associated with the intrusion of low salinity water (i.e., the Changjiang Diluted Water) along the coast. The abundance of P. parvus s.l. and A. omorii, known as neritic copepods, was mainly associated with the Korea Southern Coastal Water. Foraminiferans, Ostracods, O. plumifera, and P. aculeatus were concentrated in the southeastern water off Jeju Island during both seasons; showing their association with the Tsushima Current, which is characterized warm, high salinity water. Our results suggest that the distribution, abundance, and species composition of zooplankton are highly influenced by different water masses in the Korea Strait.

Self-excited Variability of the East Korea Warm Current: A Quasi-Geostyophic Model Study

  • Lee, Sang-Ki
    • Journal of the korean society of oceanography
    • /
    • v.34 no.1
    • /
    • pp.1-21
    • /
    • 1999
  • A two-layer quasi-geostrophic numerical model is used to investigate the temporal variability of the East Korea Warm Current (EKWC), especially the separation from the Korean coast and the generation of warm eddies. An attention is given on the active role of the nonlinear boundary layer process. For this, an idealized flat bottom model of the East Sea is forced with the annual mean wind curl and with the inflow-outflow specified at the Korea (Tsushima) and Tsugaru Straits. Two types of separation mechanisms are identified. The first one is influenced by the westward movement of the recirculating leg of the EKWC (externally driven separation),the second one is solely driven by the boundary layer dynamics (internally driven separation). However, these two processes are not independent, and usually coexist. It is hypothesized that 'internally driven separation' arises as the result of relative vorticity production at the wall, its subsequent advection via the EKWC, and its accumulation up to a critical level characterized by the separation of the boundary flow from the coast. It is found that the sharp southeastern corner of the Korean peninsula provides a favorable condition for the accumulation of relative vorticity. The separation of the EKWC usually accompanies the generation of a warm eddy with a diameter of about 120 km. The warm eddy has a typical layer-averaged velocity of 0.3 m/s and its lifespan is up to a year. In general, the characteristics of the simulated warm eddy are compatible with observations. A conclusion is therefore drawn that the variability of the EKWC is at least partially self-excited, not being influenced by any sources of perturbation in the forcing field, and that the likely source of the variability is the barotropic instability although the extent of contribution from the baroclinic instability remains unknown. The effects of the seasonal wind curl and inflow-outflow strength are also investigated.

  • PDF

Water Masses and Frontal Structures in Winter in the Northern East China Sea (동중국해 북부해역의 겨울철 수계와 전선구조)

  • 손영태;이상호;이재철;김정창
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.3
    • /
    • pp.327-339
    • /
    • 2003
  • During the winter in February 1998, January and April 1999, interdisciplinary research was conducted in a large area including the South Sea of Korea and northern East China Sea to examine distribution and structure. Water masses identified from the observed data are Warm Water originated from Tsushima Warm Current, Yellow Sea Cold Water (Northern or Central Cold Water) and Korean Southern Sea Cold Water. In the southern Yellow Sea, Warm Water originated from Tsushima Warm Current, flowing into the Cheju Strait after turning around the western Cheju Island, makes a front of '┍' shape, which is bounded by the Yellow Sea Central Cold Water in the southern part of Daeheuksan Island and by the Yellow Sea Northern Cold Water in the eastern part of the Yangtze Bank. This front changes its corner shape and position with strength of the warm water extension toward northwestern Yellow Sea. The position and structure of the fronts off the southwestern tip of the Korean peninsular and near the Yangtze Bank varies with observation period. In the front in the South Sea of Korea, cold coastal water which if formed independently due to local cooling, ,sinks along the sloping bottom. We explained the processes of variations in the distribution and structure of these winter fronts in terms of up-wind and down-wind flow by the seasonal monsoon, heat budget through the sea surface and density difference across the fronts.

Long-term Trends in Pelagic Environments of the East Sea Ecosystem

  • Lee, Chung-Il;Lee, Jae-Young;Choi, Kwang-Ho;Park, Sung-Eun
    • Ocean Science Journal
    • /
    • v.43 no.1
    • /
    • pp.1-7
    • /
    • 2008
  • Physical and biological environmental variations in the East Sea were investigated by analysing time-series of oceanographic data and meteorological indices. From 1971 to 2000, dominant periodicity in water temperature variations had two apparent periods of 3 to 4 years and of decades, especially in the southwestern part of the East Sea affected by the influence of inflowing Tsushima warm current. Fluctuating water temperature within a certain period appears to respond to El $Ni{\tilde{n}}o$ events with a time lag. It was found that there was a strong correlation between water temperature and El $Ni{\tilde{n}}o$ events with a time lag of 1.5 and 5.5 years for periods of 3 to 6 years and of decades, respectively. Corresponding with El $Ni{\tilde{n}}o$ events, water temperature variability also showed strong correlation with shift and/or changes in biological and chemical environments of nutrient concentrations, zooplankton biomass, and fisheries. However, there also occurred a short-term periodicity of water temperature variations. Within a period of 1 to 4 years, a relatively short-term cycle of water temperature variation had strong correlation with other climate indices such as Pacific Decadal Oscillation and monsoon index. After comparing coherence and phase spectrum between water temperature and different climate indices, we found that there was a shift of coherent periods to another climate index during the years when climate regime shift was reported.

A Study on the Distribution of Summer Water Temperatures of the Central Coast of the Southern Sea of Korea Using Numerical Experimentation (수치실험을 이용한 남해 중부 연안의 하계 수온 분포 연구)

  • Choi, Min-Ho;Seo, Ho-San;Kim, Dong-Sun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.1
    • /
    • pp.83-90
    • /
    • 2017
  • To understand the spatial-temporal distribution of seawater in Korea's South Sea, seawater movement and the distribution of water temperature has been analyzed using a hydrodynamic model (the Princeton Ocean Model). The directions of tidal currents were generally westward during flood tides and eastward during ebb tides. Northeastward Tsushima Warm Currents in the open sea, which is deeper than 50m were stronger than in coastal areas. Analysis of data from the hydrodynamic model showed that the water temperature in the semi-closed bay was relatively higher ($26{\sim}28^{\circ}C$) than in the open sea ($18{\sim}22^{\circ}C$). The exchange volume of semi-closed seawater was $10,331m^3/sec$ in Gwangyang Bay, $16,935m^3/sec$ in Yeosu-Gamag Bay and $13,454m^3/sec$ in Geoje-Hansan Bay. Therefore, it was shown that the lower seawater exchange volume is, the higher seawater temperature will be.

On the primary productivity in the southern sea of korea (한국남해역(韓國南海域)의 일차생산력(一次生産力))

  • CHUNG, CHANG-SOO;YANG, DONG-BEOM
    • 한국해양학회지
    • /
    • v.26 no.3
    • /
    • pp.242-254
    • /
    • 1991
  • Southern sea of Korea was investigated for primary productivity during four scientific cruises of Korea Ocean research and Development Institute. Frontal structure appeared to be an important physical characteristic in enhancing the phytoplankton production in the study area. Relatively high productivity was occurred near the front between Tsushima Warm Current Water and Coastal Waters of China continent in March 1990 and in November 1989, and near the front between Tsushima Warm Current Water and Korean coastal Water in April 1989. In August 1988 high productive zone was limited to the tidal front off the southwestern coast of Korea. Nutrient supply related to the frontal structure might play a dominant role in increasing the primary productivity but mechanisms of nutrient enrichment are not clear. Average column productivity showed its maximum in April 1989 (1727 mgC/m$^2$/day). In the costal Waters of the china Continent incident light may be an important factor in regulating the regulating the phytoplankton production because of low light penetration rate resulting from high turbidity.

  • PDF