• Title/Summary/Keyword: Tsushima warm current

Search Result 213, Processing Time 0.025 seconds

A Seasonal Circulation in the East China Sea and the Yellow Sea and its Possible Cause

  • Oh, Kyung-Hee;Pang, Ig-Chan
    • Journal of the korean society of oceanography
    • /
    • v.35 no.4
    • /
    • pp.161-169
    • /
    • 2000
  • A seasonal circulation in the East China Sea and the Yellow Sea and its possible cause have been studied with CSK data during 1965-1989. Water mass distributions are clear in winter, but not in summer because the upper layer waters are quite influenced by atmosphere. To solve the problem, a water mass analysis by mixing ratio is used for the lower layer waters. The results show that the distribution of Tsushima Warm Current Water expands to the Yellow Sea in winter and retreats to the East China Sea in summer. It means that there is a very slow seasonal circulation between the East China Sea and the Yellow Sea: Tsushima Warm Current Water flows into the Yellow Sea in winter and coastal water flows out of the Yellow Sea in summer. By the circulation, the front between Tsushima Warm Current Water and coastal water moves toward the shelf break in summer so that the flow is faster in the deeper region. The process eventually makes the transport in the Korea Strait increase. The Kuroshio does not seem to influence the process. A possible mechanism of the process is the seasonal change of sea surface slope due to different local effects of surface heating and diluting between the East China Sea and the Yellow Sea.

  • PDF

Effect of the Environmental Conditions on the Structure and Distribution of Pacific Saury in the Tsushima Warm Current Region

  • Gong, Yeong;Suh, Young-Sang
    • Journal of Environmental Science International
    • /
    • v.12 no.11
    • /
    • pp.1137-1144
    • /
    • 2003
  • To provide evidence that the changes in oceanic environmental conditions are useful indices for predicting stock structure and distribution of the Pacific saury (Cololabis saira), the body length compositions and catch per unit fishing effort were examined in relation to the sea surface temperature(SST) anomalies in the Tsushima Warm Current(TWC) region. The size of the fish became larger(smaller) than the average in the same size category during the season of higher SST(lower SST) as opposed to the normal SST. The year-to-year changes in body size caused by the changes in the environmental conditions led the stock to be homogeneous during the period of high stock level from the late 1950s to early 1970s and in the 1990s. The changes in body size manifested by higher(lower) occurrence rates of larger (smaller) sized groups in relation to temperature anomalies suggest that the changes in the environmental conditions affect the distribution and the structure of the stock in the TWC region. Therefore, if the SST anomaly derived from satellite data is large enough in the early spring months(Mar. or Apr.), it is possible to predict whether or not sea temperature will be favorable for large sized groups of saury at normal or slightly earlier time of commencement of the fishery in spring(Apr.∼June).

Comparison of nonlinear 1$1/2$-layer and 2$1/2$-layer numerical models with strong offshore winds and the Tsushima Current in the East Sea

  • Kim, Soon-Young;Lee, Hyong-Sun;Dughong Min;Yoon, Hong-Joo
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.3 no.2
    • /
    • pp.91-103
    • /
    • 1999
  • According to numerical experiments, the Sokcho Eddy is produced at $37 5~39.0^{\circ}N$ by strong offshore winds, whereas the Ulleung Eddy is produced at $35~37^{\circ}N$ by an inflow variation of the Tsushima Current. These locations compare well with visual observations. The nonlinear 1$1/2$-layer model showed that most of the East Korea Warm Current (EKWC) driven by the Tsushima Current form the Ulleung Eddy that is larger and stronger than the Sokcho Eddy. In contrast, the nonlinear 2$1/2$-layer model showed that most of the EKWC travels further northward due to a strong subsurface current, thereby enhancing the Sokcho Eddy making it larger and stronger than the Ulleung Eddy. The Sokcho Eddy is also produced relatively offshore due to an eastward subsurface current in the frontal region. Using the 1$1/2$-layer model, when the mass of the Tsushima Current decreases, the two eddies are weakened and produce a circular shape. In the 2$1/2$-layer model the EKWC pushes the Ulleung Eddy northward after 330 days, next the Sokcho and Ulleung eddies begin to interact with each other, and then after 360 days the Ulleung Eddy finally disappears absorbed by the relatively stronger Sokcho Eddy. This behavior compares favorably with other visual observations.

  • PDF

Observations of Bottom Currents in the Korea Strait (대한해협 저층해류의 관측)

  • Lee, Jae Chul;Kim, Dae Hyun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.49 no.3
    • /
    • pp.393-403
    • /
    • 2016
  • A steady, strong southward flow was observed in the lower layer beneath the Tsushima Warm Current in the deepest trough of the Korea Strait. Known as the Korea Strait Bottom Cold Water (KSBCW), this bottom current had a mean velocity of 24 cm/s and temperatures below 8–10℃. The direction of the bottom current was highly stable due to the topographic effects of the elongated trough. To determine the path of the southward bottom current, ADCP (Acoustic Doppler Current Profiler) data from 14 stations between 1999 and 2005 were examined. Persistent southward flows with average speeds of 4–10 cm/s were observed at only three places to the north of the strait where the bottom depths were 100–124 m. The collected data suggest a possible course of the southward bottom current along the southeast Korean coast before entering the deep trough of the Strait.

Distributions of Water Temperature and Salinity in the Korea Southern Coastal Water During Cochlodinium polykrikoides Blooms (C. polykrikoides 적조 발생시의 한국 남해안의 수온 및 염분 분포)

  • Lee, Moon-Ock;Choi, Jae-Hoon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.4
    • /
    • pp.235-247
    • /
    • 2009
  • In order to elucidate the cause of Cochlodinium polykrikoides blooms in the Korea southern coastal water, we investigated observational data of water temperatures and salinities in summer and winter, obtained from the stoppage of ship by NFRDI (National Fisheries Research and Development Institute) as well as composite images by NOAA from 1995 to 2008. Cochlodinium polykrikoides blooms occurred when water temperature was approximately $25.0{\sim}26.0^{\circ}C$ and salinity was 31.00 psu on average in Narodo neighboring seas. Different thermohaline fronts were observed between the Korea southern coastal water and the open sea water in summer and winter, respectively. That is, in winter four fronts were observed between the Korea southern coastal water with low temperature and low salinity, intermediate water originated from Tsushima Warm Current, Tsushima Warm Current with high temperature and high salinity, and the China coastal water with low temperature and low salinity. In contrast, in summer two fronts were observed between the Korea southern coastal water with low temperature and high salinity, Tsushima Warm Current with high temperature and low salinity, and the China coastal water with high temperature and high salinity. These thermohaline fronts also proved to be formed by two water masses with a different physical property, in terms of T-S diagrams. Consequently, we noticed that C. polykrikoides blooms occurring in Narodo neighboring seas in summer had a close relationship with thermohaline fronts observed between the Korea southern coastal water and Tsushima Warm Current.

  • PDF

Water Mass Distribution and Currents in the Vicinity of the Hupo Bank in Summer 2010 (2010년 하계 후포퇴 근해의 수괴분포와 해류)

  • Lee, Jae Chul
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.49 no.1
    • /
    • pp.61-73
    • /
    • 2016
  • Water mass distribution and currents were investigated off the east coast of Korea near the Hupo Bank using the CTD and ADCP data from June to August 2010. The typical water masses were: (1) Tsushima Surface Water (TSW) from the East Korean Warm Current (EKWC) in the surface layer, (2) a shallow thermocline at 20-30 m depth, (3) Tsushima Middle Water (TMW) of high salinity (>34.2) below the pycnocline, (4) North Korean Cold Water (NKCW) of low salinity (<34.05) and low temperature (<4°C) in the lower layer. In June, a double eddy was observed in which a cold filament intruded cyclonically from the south around a pre-existing cold-core eddy. A burst of strong southward current was recorded in mid-August due to a warm filament from the meandering EKWC. Current in the N-S direction was predominant due to topographic effects, and the direction of the northward EKWC was frequently reversed in its direction due to the eddy-filament activity, whereas the influence of the wind was not noticeable. The vertical structure of the current was of a two-layer system, with the northward EKWC in the upper layer and weak southward flows corresponding to the North Korean Cold Current (NKCC) in the deeper layer.

Some Dynamical Issues about the Tsushima Warm Current based on Bibliographical Review (서지학적으로 본 대마난류의 몇 가지 역학적 쟁점들)

  • SEUNG, YOUNG HO
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.3
    • /
    • pp.439-447
    • /
    • 2019
  • Some dynamical issues about the Tsushima Warm Current (TWC) are reviewed and checked for the remaining unresolved problems, focusing on the formation of the TWC, seasonal variation of its volume transport and its branching in the East Sea. The TWC is a part of the North Pacific (NP) subtropical gyre driven by the NP global wind system. However, the quantitative amount of volume transport is sensitive to friction, basin geometry, barrier effect and so on. Among many causes suggested by many scientists, subpolar winds are found to be most closely related with the seasonal variation of TWC volume transport. However, more studies relating the latter not only to the subpolar winds but also to those including the subtropical winds seem to be required. The branching of the TWC has been known to be due to the western intensification for the East Korean Warm Current (EKWC) and to the bottom trapping for the Nearshore Branch. Since the former hypothesis is problematic in explaining the seasonal variation of the EKWC, other candidate mechanisms may need to be considered.

The Oceanic Condition of the Tsushima Warm Current Region in the Southern Part of the East Sea (Sea of Japan) in June, 1996.

  • Lee, Chung-Il;Cho, Kyu-Dae;Yun, Jong-Hwui
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.9 no.2
    • /
    • pp.65-72
    • /
    • 2003
  • Oceanic conditions of the Tsushima Warm Current (TWC) region in the southern area of the East Sea (Japan Sea) are examined using data obtained from a CREAMS (Circulation Research if the East Asian Marginal Seas) cruise in June 1996. In 1990s, a lower temperature appears in 1996 and in this period, two branches of the TWC exist and the first branch of the TWC flows inshore of the Japanese coastal region compared to that in the other years, especially in the shallower water layer at depth less than about 200 m. The TWC cored with the higher salinity (>34.6 psu) is clearly observed over the continental shelf in the Japanese coastal region and offshore and identified by geostrophic calculation. Intrusion of the TWC into the East Sea through the Korea Strait (the Tsushima Strait) makes the density structure in the water column change and the water mass in the TWC region is unstable based on Brunt­Vaisala frequency.

  • PDF

Variation characteristics of water masses by advection of Tsushima Warm Current in southern part of the East Sea in June, 1996.

  • Lee, Chung-Il;Cho, Kyu-Dae
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2001.05a
    • /
    • pp.242-243
    • /
    • 2001
  • Tsushima Warm Current(WD entering into the East Sea through the Korean Strait flows northeastward and during this travel it shows complicated movement like meandering and eddy. It is considered that these variations of TWC are important causes making water masses unstable and also have influence on biological and chemical properties of water masses. Lee and Cho(2000) suggested that meandering of TWC in adjacent waters of Noto peninsula has much influence on fluctuation of current structure. (omitted)

  • PDF

Submarine Cable Measurements of Voltage for Current Monitoring in the-Tsushima and in the Tokara Straits

  • Hashimoto, Yoshio;Tashiro, Akimasa;Shinozaki, Takashige;Ishii, Hiaeo;Kawatate, Kazuo
    • Journal of the korean society of oceanography
    • /
    • v.37 no.3
    • /
    • pp.160-168
    • /
    • 2002
  • We have been measuring the voltage differences by using submarine cables in the Tsushima and in the Tokara Straits. The aim of these measurements is to estimate the volume transports of the ocean currents through those straits. In this paper, the voltage differences are compared with the corresponding sea level and air pressure differences between straits. Especially in the Tsushima Strait, the voltage difference is consistent with the air pressure difference as well as the sea level difference.