• Title/Summary/Keyword: Tsai-Wu Failure Criterion

Search Result 24, Processing Time 0.023 seconds

Strength Prediction Model of Rapid Prototyping Parts - Fused Deposition Modeling (FDM) (쾌속조형재료의 강도예측모델 - Fused Deposition Modeling (FDM))

  • 안성훈;이선영;백창일;추원식
    • Composites Research
    • /
    • v.15 no.6
    • /
    • pp.38-43
    • /
    • 2002
  • Rapid Prototyping(RP) technologies provide the ability to fabricate initial prototypes from various model materials. Stratasys' Fused Deposition Modeling(FDM) is a typical RP process that can fabricate prototypes out of plastic materials, and the parts made from FDM were often used as load-carrying elements. Because FDM deposits materials in about 300$\mu$m thin filament with designated orientation, parts made from FDM show anisotropic material properties. In this paper an analytic model was proposed to predict the tensile strength of FDM parts. Applying the Classical Lamination Theory, which was developed for laminated composite materials, a computer code was implemented. Tsai-Wu failure criterion was added to the code to predict the failure of the FDM parts. The tensile strengths predicted by the analytic model were compared with experimental data. The data and prediction agreed reasonably well to prove the validity of the model. In addition, a web-based advisory service(FDMAS) was developed to provide strength prediction and design rules for FDM parts.

A Study on Detection of a Critical Spot and the Securing Safety Method of CFRP Bicycle Forks by Finite Element Method (유한요소법을 이용한 CFRP 자전거 포크의 취약부 탐색 및 안전성 확보 방안 연구)

  • Lee, Su-Yeong;Lee, Nam Ju;Choi, Ung-Jae;Kim, Hong Seok;Shin, Ki-Hoon;Cheong, Seong-Kyun
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.6
    • /
    • pp.1-5
    • /
    • 2016
  • A bicycle is one of the most popular sporting goods in view of a sport activity and a human health. Metallic materials such as steel, aluminum, etc. were mainly used to the bicycle fork in the past. Nowadays, the carbon fiber reinforced composite materials are widely used to the manufacturing of a bicycle fork to reduce the weight and to increase the efficiency. Safety is a most important design parameter of a bicycle fork even if the weight and cost reduction are important. Bicycle failure may happen at the critical spot of a bicycle fork and cause the accident. In this paper, the composite bicycle fork will be analyzed to secure the safety and detect a critical spot by using the finite element method with Tsai-Wu failure criterion. The stress data were obtained for the laminated composites with various number of plies and fiber orientation under the bending load. Thus, design concept of a bicycle fork was proposed to secure the safety of a bicycle. The finite element analysis results show that the connection area between a steer tube and a fork blade is critical spot, and 75 or more layers of 0 degree are needed to secure the safety of a bicycle fork.

Analysis of the Behavior of Concrete Compressive Member with Various Cross-Sectional Shapes Strengthened by CFS (다양한 단면을 지닌 콘크리트 압축부재의 CFS 보강에 따른 거동해석)

  • 이상호;이민우;김장호;김진근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.605-610
    • /
    • 2002
  • The purpose of this study is to develop an analytic model which can describe the behavior or concrete compressive member strengthened by CFS(Carbon Fiber Sheet) with various cross-sectional shapes such as circular. square, and octagonal and various laminate angles. The failure criterion of laminated CFS is based on Tsai-Wu failure criterion. The stress strain model of confined concrete compressive member is based on an equation proposed by Mander. The effective lateral confining pressure is considered and modified according to various cross-sectional shapes. Octagonal cross-section shows the best results in the aspect of ductility, while circular does in compressive strengthening effects. In addition, [0/0/0/0] laminate in which the direction of fiber is parallel to the direction of principal stress shows the superior strength and ductility than other laminates. The analytic results show that strength and ductility of the analytic model depend on the cross-sectional shapes as well as the laminate angles.

  • PDF

Progressive Failure Analysis of UD-Fabric Hybrid Laminated Composite Joints Considering Material Nonlinearity (재료비선형을 고려한 일방향-평직 혼합 적층 복합재 체결부의 점진적 파손해석)

  • 최정석;신소영;안현수;권진회
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.79-82
    • /
    • 2002
  • A finite element method based on the two-dimensional progressive failure analysis considering material nonlinearity is presented for characterizing the strength and failure of the unidirectional-fabric hybrid laminated composite joints under pin loading. The 8-node laminated shell element is incorporated in the updated Lagrangian formulation. Failure criteria including the Maximum Stress and Tsai-Wu are used in conjunction with the complete unloading stiffness degradation method. For the verification, joint tests are conducted for the specimens with two different ply-number ratios of UD composite to fabric composite. Although there are some differences depending on ply-number ratios, the finite element model using the maximum stress criterion considering nonlinear material behavior predicts the failure strength best.

  • PDF

Safety evaluation for oven structures using parametric method (설계 변수법을 이용한 밥솥 체결 구조물의 안전도 평가)

  • Lee, Seung-Pyo;Koh, Byung-Kab;Ha, Sung-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.4
    • /
    • pp.853-858
    • /
    • 2008
  • The structures of induction heating type pressure rice cooker are consisted of oven. top heater plate and locking ring. Because the pressure is applied to their structures, those should be necessary to do the safety evaluation. In this paper, structure analysis is performed for oven structures by using finite element method and as a results, optimal thickness is achieved. Especially, analysis fur anisotropic layered material is performed because oven is made of both stainless steel and aluminum. And both von Mises and Tsai-Wu failure criterion are applied for safety factor. Parametric method is used in order to get the optimal thickness for oven and top heater plate.

Design of an Aircraft Composite Window frame Using VaRTM Process (수지 충전 공정을 이용한 항공기 윈도우 프레임 설계)

  • Kim, Wie-Dae;Hong, Dae-Jin
    • Composites Research
    • /
    • v.19 no.6
    • /
    • pp.1-7
    • /
    • 2006
  • This is the preliminary study to develop composite window frame of commercial aircraft using VaRTM process. For two candidate carbon fabrics(triaxial overbraid, sleeving braider), specimens were fabricated using VaRTM process, and the physical & mechanical property tests were performed to obtain the material properties according to ASTM. FEM analysis for each candidate carbon fabric was performed to find the minimum number of plies and weight for composite window frame to satisfy the design requirements. In this study, Tsai-Wu strength failure criterion was used to evaluate the safety of structure.

The Importance of Size/Scale Effects in the Failure of Composite Structures (복합구조물의 파괴에 관한 치수효과의 중요성)

  • Jung, Young-Hwa;Kim, Kyeong-jin;Won, Chi-Moon;Shim, Do-Sik
    • Journal of Industrial Technology
    • /
    • v.15
    • /
    • pp.217-222
    • /
    • 1995
  • In this paper, the importance of the size effects on the strength ratio is demonstrated by numerical results. The rate of decrease of tensile strength is for glass fiber, based on the experience of a composite manufacturing specialist. For other material, similar procedure may be used until detailed test result on such material is available. The strength criteria used is that of Tsai-Wu for stress space. The factors influencing the ratio are, reducing the tensile strength alone or both tensile and compression strengths, selection of the normalized interaction term, that is, the generalized Von Mises criterion or the Hill's criterion, and the status of applied stresses. Some of the numerical results are presented for a guideline for the furture study.

  • PDF

Strength Prediction Model and The Internet Service of Fused Deposition Modeling (Fused Deposition Modeling의 강도예측모델과 인터넷 서비스)

  • 백창일;추원식;이선영;안성훈
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.179-182
    • /
    • 2002
  • Rapid Prototyping (RP) technologies provide the ability to fabricate initial prototypes from various model materials. Stratasys' Fused Deposition Modeling (FDM) is a typical RP process that can fabricate prototypes out of plastic materials, and the parts made from FDM were often used as load-carrying elements. Because FDM deposits materials in about $300\mutextrm{m}$ thin filament with designated orientation, parts made from FDM show anisotropic material properties. This paper proposes an analytic model to predict the tensile strength of FDM parts. Applying the Classical Lamination Theory, which was developed for laminated composite materials, a computer code was implemented. Tsai-Wu failure criterion was added to the code to predict the failure of the FDM parts. The tensile strengths predicted by the analytic model were compared with experimental data. The data and prediction agreed reasonably well to prove the validity of the model. In addition, a web-based advisory service was developed to provide to strength prediction and design rules for FDM parts.

  • PDF

A technique for optimally designing fibre-reinforced laminated structures for minimum weight with manufacturing uncertainties accounted for

  • Walker, M.
    • Steel and Composite Structures
    • /
    • v.7 no.3
    • /
    • pp.253-262
    • /
    • 2007
  • A methodology to design symmetrically laminated fibre-reinforced structures under transverse loads for minimum weight, with manufacturing uncertainty in the ply angle, is described. The ply angle and the ply thickness are the design variables, and the Tsai-Wu failure criteria is the design constraint implemented. It is assumed that the probability of any tolerance value occurring within the tolerance band, compared with any other, is equal, and thus the approach is a worst-case scenario approach. The finite element method, based on Mindlin plate and shell theory, is implemented, and thus effects like bending-twisting coupling are accounted for. The Golden Section method is used as the search algorithm, but the methodology is flexible enough to allow any appropriate finite element formulation, search algorithm and failure criterion to be substituted. In order to demonstrate the procedure, laminated plates with varying aspect ratios and boundary conditions are optimally designed and compared.

Elasto-plastic Analysis of a hydrogen pressure vessel of Composite materials (복합재료 수소 압력용기의 탄소성 해석)

  • Do, Ki-Won;Han, Hoon-Hee;Ha, Sung-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.275-280
    • /
    • 2008
  • To improve the durability of a hydrogen pressure vessel which is applied high-pressure, it needs the autofrettage process which induces compressive residual stress in the Aluminum liner. This study presents the elasto-plastic analysis to predict the behavior of structure accurately, and the Tsai-Wu failure criterion is applied to predict failure of pressure vessel of Aluminum liner and composite materials. Generally, plastic analysis is more complex than elastic analysis and has much time to predict. To complement its weakness, the AxicomPro(EXCEL program), applied radial return algorithm and nonlinear classical laminate theory (CLT), is developed for predicting results with more simple and accurate than the existing finite element analysis programs.

  • PDF