• Title/Summary/Keyword: Tryptophan-fluorescence spectroscopy

Search Result 10, Processing Time 0.029 seconds

Effect of Ganglioside $G_{M3}$ on the Erythrocyte Glucose Transporter (GLUT1): Conformational Changes Measured by Steady-State and Time-Resolved Fluorescence Spectroscopy

  • Yoon, Hae-Jung;Lee, Min-Yung;Jhon, GiI-Ja
    • BMB Reports
    • /
    • v.30 no.4
    • /
    • pp.240-245
    • /
    • 1997
  • Interactions between ganglioside $G_{M3}$ and glucose transporter, GLUT1 were studied by measuring the effect of $G_{M3}$ on steady-state and time-resolved fluorescence of purified GLUT1 in synthetic lipids and on the 3-O-methylglucose uptake by human erythrocytes. The intrinsic tryptophan fluorescence showed a GLUT 1 emission maximum of 335 nm, and increased in the presence of $G_{M3}$ by 12% without shifting the emission maximum, The fluorescence lifetimes of intrinsic tryptophan on GLUT1 consisted of a long component of 7.8 ns and a short component of 2,3 ns and $G_{M3}$ increased both lifetime components. Lifetime components were quenched by acrylamide and KI. Acrylarnide-mduced quenching of long-lifetime components was partly recovered by $G_{M3}$ However. KI-induccd quenching of short- and long-lifetime components was not rescued by $G_{M3}$. The anisotropy of 1.6-diphenyl-1.3.5-hexatriene (DPH)-probed dimyristoylphosphatidylcholine (DMPC) model membrane was also increased with $G_{M3}$ incorporation, The transport rate of 3-O-methylglucose increased by 20% with $G_{M3}$ incorporation on the erythrocytes, Therefore, $G_{M3}$ altered the environment of lipid membrane and induced the conformational change of GLUT1.

  • PDF

Structural Studies on the E. coli Methionyl-tRNA Synthetase and Their Interaction with E. coli $tRNA^{fMet}$

  • Kim Ji-Hun;Ahn Hee-Chul;Park Sung-Jin;Kim Sung-Hoon;Lee Bong-Jin
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.9 no.2
    • /
    • pp.110-121
    • /
    • 2005
  • E.coli methionyl tRNA synthetase consist of 676 amino acids and plays a key role in initiation of protein synthesis. The native form of this enzyme is a homodimer, but the monomeric enzyme truncated approximately C-terminal 120 amino acids retains the full enzymatic activities. X-ray crystal structure of the active monomeric enzyme shows that it has two domains. The N-terminal domain is thought to be a binding site for acceptor stem of tRNA, ATP, and methionine. The C-terminal domain is mainly a-helical and makes an interaction with the anticodon of $tRNA^{Met}$. Especially it is suggested that the region of helix-loop-helix including the tryptophan residue at the position 461 may be the essential for the interaction with anticodon of $tRNA^{Met}$. In this work the structure and function of E. coli methionyl-tRNA synthetase was studied by spectroscopic method (NMR, CD, Fluorescence). The importance of tryptophan residue at the position 461 was investigated by fluorescence spectroscopy. Tryptophan 461 is expected to be an essential site for the interaction between E. coli methionyl-tRNA synthetase and E. coli $tRNA^{Met}$. Proton and heteonuclear 2-dimensional NMR spectroscopy were also used to elucidate the protein-tRNA interaction.

  • PDF

In vitro Folding of Recombinant Hepatitis B Virus X-Protein Produced in Escherichia coli: Formation of Folding Intermediates

  • Kim, Sun-Ok;Sohn, Mi-Jin;Jeong, Soon-Seog;Shin, Jeh-Hoon;Lee, Young-Ik
    • BMB Reports
    • /
    • v.32 no.6
    • /
    • pp.521-528
    • /
    • 1999
  • The folding of recombinant hepatitis B virus X-protein (rHBx) solubilized from Escherichia coli inclusion bodies was investigated. By sequential dialysis of urea, rHBx was folded into its native structure, which was demonstrated by the efficacy of its transcriptional activation of the adenovirus major late promoter (MLP), fluorescence spectroscopy, and circular dichroism (CD) analysis. The decrease in CD values at 220 nm and a corresponding blue shift of the intrinsic fluorescence emission confirmed the ability of rHBx to refold in lower concentrations of urea, yielding the active protein. Equilibrium and kinetic studies of the refolding of rHBx were carried out by tryptophan fluorescence measurements. From the biphasic nature of the fluorescence curves, the existence of stable intermediate states in the renaturation process was inferred. Reverse phase-high performance liquid chromatography (RP-HPLC) analysis further demonstrated the existence of these intermediates and their apparent compactness.

  • PDF

Histidine (His83) is Essential for Heat Shock Factor 1 (HSF1) Activation in Protecting against Acid pH Stress

  • Lu, Ming;Chang, Ziwei;Park, Jang-Su
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3405-3409
    • /
    • 2013
  • The activation of heat shock factor 1 (HSF1) can be induced by the changes in environmental pH, but the mechanism of HSF1 activation by acidification is not completely understood. This paper reports that a low pH (pH~6.0) can trigger human HSF1 activation. Considering the involvement of the imidazole group of histidine residues under acid pH stress, an in vitro EMSA experiment, Trp-fluorescence spectroscopy, and protein structural analysis showed that the residue, His83, is the essential for pH-dependent human HSF1-activation. To determine the roles of His83 in the HSF1-mediated stress response affecting the cellular acid resistance, mouse embryo fibroblasts with normal wild-type or mutant mouse HSF1 expression were preconditioned by heating or pH stress. The results suggest that His83 is essential for HSF1 activation or the HSF1-mediated transcription of heat shock proteins, in protecting cells from acid pH stress.

Characterization of the Catalytic Properties of Recombinant Acetohydroxyacid Synthase from Tobacco

  • Kim, Joung-Mok;Choi, Jung-Do;Kim, Bok-Hwan;Yoon, Moon-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.2
    • /
    • pp.260-264
    • /
    • 2005
  • The nature of the active site of Tobacco acetohydroxyacid synthase (AHAS) in the substrate- and cofactorbinding was studied by kinetics and fluorescence spectroscopy. The substrate saturation curve does not follow Michaelis-Menten kinetics at different temperatures (7, 21 and 37 ${^{\circ}C}$), pH (6.5, 7.5 and 8.5) and buffers (Tris-HCl and MOPS). The concentration of one half of the maximum velocity ($S_{0.5}$) decreased in the following order: pyruvate $\gt$ ThDP $\approx$$Mg^{+2}$ $\gt$ FAD. However, the catalytic efficiency (K$_{cat}/S_{0.5}$) inversely decreased in the following order; FAD $\gt$ $Mg^{+2}$ $\approx$ThDP $\gt$ pyruvate, indicating that the cofactors by in decreasing order; FAD, $Mg^{+2}$, ThDP, affect the catalysis of AHAS. The dissociation constant ($K_d$) of the intrinsic tryptophan fluorescence decreased with the same tendency of the concentration of one half of the maximum velocity ($S_{0.5}$) decreasing order. This data provides evidence that the substrate and cofactor binding natures of the active site, as well as its activation characteristics, resemble those of other ThDP-dependent enzymes.

Comparison of Surface and Core Peptide Fraction from Apo B-100 of Human LDL (Low Density Lipoprotein)

  • Cho, Hyun-Mi;Shin, Seung-Uon;Kim, Tae-Woong
    • Preventive Nutrition and Food Science
    • /
    • v.4 no.2
    • /
    • pp.145-151
    • /
    • 1999
  • Apolipoprotein B-100 (apo B-100) is an important component in plasma low density lipoproteins (LDL). It function as the ligand for the LDL receptor in peripheral cells. The LDLs are removed from the circulation by both high-affinity receptor-mediated and receptor-independant pathways. LDLs are heterogeneous in their lipid content, size and density and certain LDL subspecies increase risk of atherosclerosis due to differences in the conformation of apo B in the particle. In the present study , surface and core peptide fraction of Apo B-100 have been characterized by comparing peptide-mapping and fluorescence spectroscopy. Surface fragments of apo B-100 were generated by digestion of LDL with either trypsin , pronase, or pancreatin elastase. Surface fractions were fractionated on a Sephadex G-50 column. The remaining core fragments were delipidated and redigested with the above enzymes, and the resulting core peptides were compared with surface peptides. Results from peptide-mapping by HPLC showed pronase-digestion was more extensive than trypsin -digestion to remove surface peptide fraction from LDL. Fluorescence spectra showed that core fractions contained higher amount of tryptophan than surface fractions, and it indicated that core fraction wa smore hydrophobic than surface fractions. A comparison of the behavior of the core and surface provided informations about the regions of apo B-100 involved in LDL metabolism and also about the structural features concerning the formation of atherosclerosis.

  • PDF

Effects of Temperature and Additives on the Thermal Stability of Glucoamylase from Aspergillus niger

  • Liu, Yang;Meng, Zhaoli;Shi, Ruilin;Zhan, Le;Hu, Wei;Xiang, Hongyu;Xie, Qiuhong
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.1
    • /
    • pp.33-43
    • /
    • 2015
  • GAM-1 and GAM-2, two themostable glucoamylases from Aspergillus niger B-30, possess different molecular masses, glycosylation, and thermal stability. In the present study, the effects of additives on the thermal inactivation of GAM-1 and GAM-2 were investigated. The half-lives of GAM-1 and GAM-2 at 70℃ were 45 and 216 min, respectively. Data obtained from fluorescence spectroscopy, circular dichroism spectroscopy, UV absorption spectroscopy, and dynamic light scattering demonstrated that during the thermal inactivation progress, combined with the loss of the helical structure and a majority of the tertiary structure, tryptophan residues were partially exposed and further led to glucoamylases aggregating. The thermal stability of GAM-1 and GAM-2 was largely improved in the presence of sorbitol and trehalose. Results from spectroscopy and Native-PAGE confirmed that sorbitol and trehalose maintained the native state of glucoamylases and prevented their thermal aggregation. The loss of hydrophobic bonding and helical structure was responsible for the decrease of glucoamylase activity. Additionally, sorbitol and trehalose significantly increased the substrate affinity and catalytic efficiency of the two glucoamylases. Our results display an insight into the thermal inactivation of glucoamylases and provide an important base for industrial applications of the thermally stable glucoamylases.

Structure and Bacterial Cell Selectivity of a Fish-Derived Antimicrobial Peptide, Pleurocidin

  • Yang Ji-Young;Shin Song-Yub;Lim Shin-Saeng;Hahm Kyung-Soo;Kim Yang-Mee
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.6
    • /
    • pp.880-888
    • /
    • 2006
  • Pleurocidin, an $\alpha$-helical cationic antimicrobial peptide, was isolated from skin mucosa of winter flounder (Pleuronectes americamus). It had strong antimicrobial activities against Gram-positive and Gram-negative bacteria, but had very weak hemolytic activity. The Gly$^{13,17}\rightarrow$Ala analog (pleurocidin-AA) showed similar antibacterial activities, but had dramatically increased hemolytic activity. The bacterial cell selectivity of pleurocidin was confirmed through the membrane-disrupting and membrane-binding affinities using dye leakage, tryptophan fluorescence blue shift, and tryptophan quenching experiments. However, the non-cell-selective antimicrobial peptide, pleurocidin-AA, interacts strongly with both negatively charged and zwitterionic phospholipid membranes, the latter of which are the major constituents of the outer leaflet of erythrocytes. Circular dihroism spectra showed that pleurocidin-AA has much higher contents of $\alpha$-helical conformation than pleurocidin. The tertiary structure determined by NMR spectroscopy showed that pleurocidin has a flexible. structure between the long helix from $Gly^3$ to $Gly^{17}$ and the short helix from $Gly^{17}$ to $Leu^{25}$. Cell-selective antimicrobial peptide pleurocidin interacts strongly with negatively charged phospholipid membranes, which mimic bacterial membranes. Structural flexibility between the two helices may play a key role in bacterial cell selectivity of pleurocidin.

Higher Protein Digestibility of Chicken Thigh than Breast Muscle in an In Vitro Elderly Digestion Model

  • Seonmin Lee;Kyung Jo;Hyun Gyung Jeong;Seul-Ki-Chan Jeong;Jung In Park;Hae In Yong;Yun-Sang Choi;Samooel Jung
    • Food Science of Animal Resources
    • /
    • v.43 no.2
    • /
    • pp.305-318
    • /
    • 2023
  • This study investigated the protein digestibility of chicken breast and thigh in an in vitro digestion model to determine the better protein sources for the elderly in terms of bioavailability. For this purpose, the biochemical traits of raw muscles and the structural properties of myofibrillar proteins were monitored. The thigh had higher pH, 10% trichloroacetic acid-soluble α-amino groups, and protein carbonyl content than the breast (p<0.05). In the proximate composition, the thigh had higher crude fat and lower crude protein content than the breast (p<0.05). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of myofibrillar proteins showed noticeable differences in the band intensities of tropomyosin α-chain and myosin light chain-3 between the thigh and breast. The intrinsic tryptophan fluorescence intensity of myosin was lower in the thigh than in the breast (p<0.05). Moreover, circular dichroism spectroscopy of myosin revealed that the thigh had higher α-helical and lower β-sheet structures than the breast (p<0.05). The cooked muscles were then chopped and digested in the elderly digestion model. The thigh had more α-amino groups than the breast after both gastric and gastrointestinal digestion (p<0.05). SDS-PAGE analysis of the gastric digesta showed that more bands remained in the digesta of the breast than that of the thigh. The content of proteins less than 3 kDa in the gastrointestinal digesta was also higher in the thigh than in the breast (p<0.05). These results reveal that chicken thigh with higher in vitro protein digestibility is a more appropriate protein source for the elderly than chicken breast.