• Title/Summary/Keyword: Tryptophan(Trp)

Search Result 64, Processing Time 0.016 seconds

Interaction of Barley Acetolactate Synthase with Triazolopyrimidine Inhibitors (Triazolopyrimidine계 저해제와 보리 Acetolactate Synthase와의 상호작용)

  • Lee, Jae Soeb;Chang, Soo Ik;Nam Goong, Sung Keon;Shin, Jung Hyu;Choi, Jung Do
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.3
    • /
    • pp.306-314
    • /
    • 1998
  • Acetolactate synthase (ALS) is the common enzyme in the biosynthesis of branched chain amino acids, Val, Leu, and Ile in bacteria, yeast, and higher plants. The enzyme is target site of several classes of structually diverse herbicides, including the sulfonylureas, the imidazolinones, the triazolopyrimidines, and the primidyl-oxy-benzoates. We have synthesized new triazolopyrimidine (TP) derivatives, and determined their inhibitory activities on barley ALS. $lC_{50}$ values for the active compounds were 3.2 nM-0.62 mM, and some of them appeared to be potent inhibitors. The progress curves for inhibition of ALS by TP4, a representative derivative, indicated that the extent of inhibition increased with incubation time. The inhibition of ALS by TP4 showed mixed-type inhibition with respect to pyruvate. Dual inhibition analyses of TP4 versus imidazolinone Cadre and feedback inhibitor Leu suggested that three different classes of inhibitors bind to ALS in a mutually exclusive manner. Chemical modification of tyrosyl residues of ALS decreased sensitivity of ALS to TP4, while modification of tryptophan and cysteine did not affect the sensitivity.

  • PDF

Studies on the Utilization of Wastes from Fish Processing II -Changes of Chemical Properties of Skipjack Tuna Viscera Silage during Storage by the Processing Method (수산물 가공부산물의 이용에 관한 연구 II-가공방법에 따른 가다랭이 내장 silage의 저장 중 성분변화)

  • YOON Ho-Dong;LEE Doo-Seog;SUH Sang-Bok
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.1
    • /
    • pp.8-15
    • /
    • 1997
  • For an effective use of fish by-products from the skipjack tuna (Katsuwonus pelamis) canning manufactures, the changes of chemical properties of skipjark tuna viscera silage by the processing method during storage were investigated. The acid treated skipjack tuna viscera silage (ASS) were higher in the contents of moisture, lipid, protein and mineral but lower in the contents of carbohydrate and polyunsaturated fatty acids than those of fermented skipjack tuna viscera silage (FSS) by L. bulgaricus, KCTC 3188 and L. plantarum, KCTC 1048. Especially, the contents of total n-3 fatty acids in FSS increased remarkably during storage. The dominant amino acids in ASS and FSS were glutamic acid (Glu), aspartic acid (Asp), leucine (Leu), glycine (Gly) and alanine (Ala). And the contents of tryptophan (Trp) decreased by $30\%$ in ASS and $5\%$ in FSS in comparision with that of raw skipjack tuna viscera after 42 days of storage. The concentration of vitamin $B_1\;and\;B_2$ in FSS increased gradually during storage but the concentration of vitamin $B_2$ in ASS decreased. In the organoleptic evaluation, ASS gave a grayish brown color and a fishy odor. On the other hand, FSS had reddish brown color and sour taste by the production of lactic arid during storage.

  • PDF

Effect of Essential Amino Acid Deficient Diets in Feeding Response and c-fos Expression in Rats Brain in Response to Methionine Deficiency (필수아미노산 결핍에 의한 섭식반응과 Methionine 결핍이 흰쥐의 뇌내 c-fos 발현에 미치는 영향)

  • Kim, C.H.
    • Journal of Animal Science and Technology
    • /
    • v.44 no.6
    • /
    • pp.727-738
    • /
    • 2002
  • This study was conducted to investigate the effect of essential amino acid(EAA) deficient diets on short-term feeding response and the Fos expression in brain area when methionine deficiency diet fed, and thereby to know the mechanism of feed intake regulation. In all trials, experimental diets were formulated with pure amino acid mixture to level of 15% nitrogen. Rats were adapted to a 6-hr single-meal feeding per day(17:00${\sim}$21:00). Feed intake and body weight were monitored every hour after 7-day of feeding of individual EAA deficient diets in Exp. Ⅰ. In Exp. Ⅱ, Fos immuno- histochemistry was determined in various regions of brain to identify the regions that is related to suppressed feed intake following feeding methionine-deficient diet. Fos expression was examined to know the initial sensitive region in the brains of rats at 3h after feeding of the control and methionine deficient diet(-Met). Initial response to EAA deficiency diets was severely depressed in methionine deficiency diet, but the depression was low in threonine deficiency diet. However, the feed intake at 3rd day in rats was depressed in the order of His(71%), Leu(68%), Ile(66%), Thr(63%), Trp(61%), Val(55%), Phe(52%), Met(51%), Lys(44%) and Arg(24%). Fos immunoreaction in neural regions(PPC, amygdala and EPC) of pyrifrom cortex was increased in the -Met group more than in the control diet group, but those in LH, VMH and PVM were similar. Thus, based on these data, the PPC was identified as the initial response area in the -EAA diet.

A Missense Mutation in Exon 5 of the Bovine Growth Hormone Gene (소 성장호르몬 유전자의 Exon 5번에서의 새로운 다형성 연구)

  • Yoon, D. H.;Kim, T. H.;Lee, K. H.;Park, E. W.;Lee, H. K.;Cheong, I. C.;Hong, K. C.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.1
    • /
    • pp.13-22
    • /
    • 2003
  • Growth Hormone (GH) gene is a member of gene family through the evolutionary process from a small common ancestral gene by a series of gene duplications. The role of the GH in growth and performance controls has been extensively studied in human, mice and livestock. Many researchers have considered GH as a strong candidate gene for evaluation of genetic polymorphisms that could be associated with economic traits in cattle. We report here a novel missense mutation within the exon 5 of the bovine Growth Hormone (bGH) gene. We could amplified 522 bp fragments from eight unrelated Hanwoo cattle by PCR, then, subsequently cloned and sequenced. An Msp I RFLP corresponding to a C to T transition was observed at position 2258 nt. From this result, we could predict a missense mutation (Arg to Trp) at codon 166 in a highly conserved region among many mammals. Codominant Mendelian segregation of the two alleles, Msp I (+) and Msp I (-), was observed in two full-sib F2 families (n = 32, African taurine Bos taurus ${\times}$ African zebu Bos indicus) and eight half-sib Hanwoo families. For the availability of genetic marker, we have performed PCR-RFLP with a large number of individual animals from 15 different cattle breeds (European and Asian taurines, and African indicines). Consideration of breed frequencies of Msp I (-) allele in relation to breed type and their geographic origins, shows higher frequencies in humped breeds or Asian cattle breeds than in humpless or European breeds. This result indicates that the missense mutation can be contributed the functional significance such as the signal transduction through the receptor binding, also may be used as a marker for selection of the economic traits in Hanwoo.