• Title/Summary/Keyword: Trypan blue

Search Result 168, Processing Time 0.019 seconds

The Ca2+-activated K+ (BK) Channel-opener NS 1619 Prevents Hydrogen Peroxide-induced Cell Death and Mitochondrial Dysfunction in Retinal Pigment Epithelial Cells (망막 색소상피세포에서 산화성 세포 손상과 미토콘드리아기능 저해에 미치는 NS 1619의 보호 효과)

  • Kang, Jae Hoon;Woo, Jae Suk
    • Journal of Life Science
    • /
    • v.27 no.11
    • /
    • pp.1349-1356
    • /
    • 2017
  • Potassium channel openers (KCOs) produce physiological and pharmacological defense mechanisms against cell injuries caused by oxidative stress of diverse origins. Openings of mitochondrial and plasmalemmal $K^+$ channels are involved in the defense mechanisms. This study tested whether NS 1619, an opener of large-conductance BK channels, has a similar beneficial influence on the pigment epithelial cells of retinas. The human retinal pigment epithelial cell line ARPE-19 was exposed to $H_2O_2$-induced oxidative stress in the absence and presence of NS 1619. The degrees of the cells' injuries were assessed by analyzing the cells' trypan-blue exclusion abilities and TUNEL staining. NS 1619 produced remarkable protections against cell injuries caused by $H_2O_2$. It prevented apoptotic and necrotic cell deaths. The protective effect of NS 1619 was significantly diminished when the cells were treated with NS 1619 in combination with the BK channel-blocker paxilline. NS 1619 significantly ameliorated cellular ATP deprivations in $H_2O_2$-treated cells. It helped mitochondria preserve their functional integrity, which was estimated by their MTT reduction abilities and mitochondrial membrane potential. In conclusion, it was suggested that NS 1619 had a beneficial effect on mitochondria in regards to preserving their functional integrity under oxidative stress, and it produces defense mechanisms against oxidant-induced cell injuries in ARPE-19 cells.

Role of ERK (Extracellular Signal Regulated Kinas) and PPARγ (Peroxisome Proliferator-Activated Receptor Gamma) on TGF-β1 Induced Human Endometrial Stromal Cell Decidualization (TGF-β1에 의하여 유도된 인간자궁내막의 탈락막화(Decidualization)에 있어서 ERK (Extracellular Signal Regulated Kinas)와 PPARγ (Peroxisome Proliferator-Activated Receptor Gamma)의 역할)

  • Chang, Hye Jin;Lee, Jae Hoon;Kim, Mi Ran;Hwang, Kyung Joo;Park, Dong Wook;Min, Churl K.
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.33 no.2
    • /
    • pp.105-113
    • /
    • 2006
  • Objective: To investigate the role of ERK and $PPAR{\gamma}$ on the $TGF-{\beta}1$ induced human endometrial stromal cell decidualization in vitro. Method: Endometrial stromal cells are cultured under the following condition: DMEM/F12 (10% FBS, 1 nM E2 and 100 nM P4). $TGF-{\beta}1$ (5 ng/ml), Rosiglitazone (50 nM), and PD98059 ($20{\mu}M$) were added according to experimental purposes. Trypan-Blue and hematocytometer were utilized to count cell number. Enzyme-linked immunosorbent assay (ELISA) and western blotting were utilized to detect proteins. Result: $TGF-{\beta}1$ inhibited proliferation of cultured human endometrial stromal cells and induced expression of PGE2 and prolactin. This effect was mediated by Smad and ERK activation. Administration of rosiglitazone, $PPAR{\gamma}$ agonist, prevented $TGF-{\beta}1$ effect on cell proliferation. Furthermore, Rosiglitazone inhibited $TGF-{\beta}1$ induced activation of ERK, consequently reduced PGE2 and prolactin production. Conclusion: $TGF-{\beta}1$ induced decidualization of endometrial stromal cell through Smad and ERK phosphorylation. $PPAR{\gamma}$ acts as a negative regulator of human ndometrial cell decidualization in vitro.

High-plasticity mineral trioxide aggregate and its effects on M1 and M2 macrophage viability and adherence, phagocyte activity, production of reactive oxygen species, and cytokines

  • Betania Canal Vasconcellos;Layara Cristine Tomaz Tavares;Danilo Couto da Silva;Francielen Oliveira Fonseca ;Francine Benetti ;Antonio Paulino Ribeiro Sobrinho ;Warley Luciano Fonseca Tavares
    • Restorative Dentistry and Endodontics
    • /
    • v.48 no.1
    • /
    • pp.6.1-6.14
    • /
    • 2023
  • Objectives: This study evaluated the effects of high-plasticity mineral trioxide aggregate (MTA-HP) on the activity of M1 and M2 macrophages, compared to white MTA (Angelus). Materials and Methods: Peritoneal inflammatory M1 (from C57BL/6 mice) and M2 (from BALB/c mice) macrophages were cultured in the presence of the tested materials. Cell viability (MTT and trypan blue assays), adhesion, phagocytosis, reactive oxygen species (ROS) production, and tumor necrosis factor (TNF)-α and transforming growth factor (TGF)-β production were evaluated. Parametric analysis of variance and the non-parametric Kruskal-Wallis test were used. Results were considered significant when p < 0.05. Results: The MTT assay revealed a significant decrease in M1 metabolism with MTA-HP at 24 hours, and with MTA and MTA-HP later. The trypan blue assay showed significantly fewer live M1 at 48 hours and live M2 at 48 and 72 hours with MTA-HP, compared to MTA. M1 and M2 adherence and phagocytosis showed no significant differences compared to control for both materials. Zymosan A stimulated ROS production by macrophages. In the absence of interferon-γ, TNF-α production by M1 did not significantly differ between groups. For M2, both materials showed higher TNF-α production in the presence of the stimulus, but without significant between-group differences. Likewise, TGF-β production by M1 and M2 macrophages was not significantly different between the groups. Conclusions: M1 and M2 macrophages presented different viability in response to MTA and MTA-HP at different time points. Introducing a plasticizer into the MTA vehicle did not interfere with the activity of M1 and M2 macrophages.

Cytotoxicity and Genotoxicity Study of CKD-712 in Mammalian Cell System

  • Kim, Eun-Young;Yun, Hye-Jung;Kim, Youn-Jung;Ryu, Jae-Chun
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2003.05a
    • /
    • pp.186-186
    • /
    • 2003
  • CKD-712, named S-YS49 is a chiral compound derived from higenamine (one component of Aconite spp.) derivatives. To compare the cytotoxicity of CKD-712 between in the absence and in the presence of S9 metabolic activation system, we performed trypan blue dye exclusion assay in Chinese hamster lung (CHL) cell. In CHL cells, the cytotoxicity (IC50) of CKD-712 was 92.9 $\mu\textrm{g}$/ml and 186.1 $\mu\textrm{g}$/ml in the absence and presence of S9 metabolic activation, respectively. And we also investigated the induction of DNA damages in mammalian cells. To perform the single cell gel electrophoresis, we determined optimum concentration in mouse lymphoma L5178Y cells using frypan blue dye exclusion assay Each IC20 of CKD-712 was determined the concentration of 23.4 $\mu\textrm{g}$/ml and 24.8 $\mu\textrm{g}$/ml in the absence and presence of S9 metabolic activation, respectively. In the comet assay, DNA damage was not observed at the concentration range from 23.4 $\mu\textrm{g}$/ml to 5.9 $\mu\textrm{g}$/ml in the absence of S9 metabolic activation system. In the presence of S9 metabolic activation system, DNA damage was not observed at the concentration range from 24.8 $\mu\textrm{g}$/ml to 6.2 $\mu\textrm{g}$/ml. From these results, it is assumed that CKD-712 may be metabolized to less cytotoxic metabolite(s).

  • PDF

Effect of Fructus ligustri Lucidi Extract on Cell Viability in Human Glioma Cells

  • Kim, Jin-Won;Jeong, Ji-Cheon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.1
    • /
    • pp.199-205
    • /
    • 2009
  • It is unclear whether Fructus ligustri Lucidi (FLL) extract anti-proliferative effect in human glioma cells. The present study was therefore undertaken to examine the effect of FLL on cell viability and to determine the underlying mechanism in A172 human glioma cells. Cell viability and cell death were estimated by MTT assay and trypan blue exclusion assay, respectively. Apoptosis was measured by Annexin-V binding assay and cell cycle analysis. Activation of kinases and caspase-3 was estimated by Western blot analysis. FLL resulted in apoptotic cell death in a dose- and time-dependent manner. FLL-induced cell death was not associated with reactive oxygen species generation. Western blot analysis showed that FLL treatment caused down-regulation of PI3K/Akt pathway, but not ERK. The PI3K/Akt inhibitor LY984002 sensitized the FLL-induced cell death and overexpression of Akt prevented the cell death. FLL induced caspase-3 activation and the FLL-induced cell death was prevented by caspase inhibitors. These findings indicate that FLL results in a caspase-dependent cell death through a P13K/Akt pathway in human glioma cells. These data suggest that FLL may serve as a potential therapeutic agent for malignant human gliomas.

The development of modified cellulase with higher activity by directed evolution

  • Kang, Whan-Koo;Son, Jeong-Il;Hwang, Sun-Duk;Kim, Bum-Chang;Kim, Hyoung-Sik;Lee, Byung-Ryul;Lee, Chul-Woo
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.499-503
    • /
    • 2003
  • In the study, we have obtained modified cellulase with higher cellulose degradation activity by molecular evolution method. Cellobiohydrolase(CBH I ) gene of Trichorderma reerri has been used. Cellulase mutant 228-G2 was selected and the activity of cellulase mutant 228-G2 was increased by 300% compared to original CBH I The 17 among 1542bases were found to be modified with mutant 228-G2.

  • PDF

Cytotoxicity of Vibrio vulnificus Cytolysin on Rat Neutrophils

  • Park, Kwang-Hyun;Rho, In-Whan;Park, Byung-Hyun;Kim, Jong-Suk;Kim, Hyung-Rho
    • BMB Reports
    • /
    • v.32 no.3
    • /
    • pp.273-278
    • /
    • 1999
  • Cytolysin produced by Vibrio vulnificus has been known to be lethal to mice by increasing vascular permeability and neutrophil sequestration in the lung. In the present study, a cytotoxic mechanism of V. vulnificus cytolysin on the neutrophil was investigated. Cytolysin rapidly bound to neutrophils and induced cell death, as determined by the trypan blue exclusion test. V. vulnificus cytolysin caused the depletion of cellular ATP without the release of ATP or lactate dehydrogenase. Formation of transmembrane pores was evidenced by the rapid efflux of potassium and 2-deoxy-D-[$^3H$]glucose from cytolysin-treated neutrophils. It was further confirmed by the rapid flow of monovalent ions in the patch clamp of cytolysin-treated neutrophil membrane. The pore formation was accompanied by the oligomerization of cytolysin monomers on the neutrophil membrane as demonstrated by immunoblot, which exhibited a 210 kDa band corresponding to a tetramer of the native cytolysin of $M_r$ 51,000. These findings indicate that V. vulnificus cytolysin rapidly binds to the neutrophil membrane and oligomerizes to form small transmembrane pores, which induce the efflux of potassium and the depletion of cellular ATP leading to cell death without cytolysis.

  • PDF

$\alpha$-Phenyl-N-t-butylnitrone Protects Oxidative Damage to HepG2 Cells

  • Kim, Sun-Yee;Kim, Ryung-Hyo;Huh, Tae-Lin;Park, Jeen-Woo
    • BMB Reports
    • /
    • v.34 no.1
    • /
    • pp.43-46
    • /
    • 2001
  • $\alpha$-Phenyl-N-t-butylnitrone (PBN) is one of the most widely used spin-trapping compounds for investigating the existence of free radicals in biological systems. Recently, there has been considerable interest in the antioxidant nature of PBN on degenerative diseases, presumably related to oxidative stress. In the present study, the protective effect of PBN on the HepG2 cell line under oxidative stress was investigated. When the HepG2 cells were exposed to oxidant, such as hydrogen peroxide, menadione, or ethanol, the protective role of PBN was manifested as a reduction in trypan blue uptake and a decrease in the endogenous production of oxidants, as measured by the oxidation of 2',7'-dichlorodihydrofluorescin. The modulation of activity of major antioxidant enzymes, such as superoxide dismutase and catalase, was not significantly different either in the presence or in the absence of PBN. This indicates that PBN acts as a direct scavenger of reactive oxygen species.

  • PDF

Effect of Mylabris phalerata on colorectaladenocarcinoma cells (SNU-C5 cell lines) (반모가 대장암세포에 미치는 영향)

  • Kim, Jin-Sung;Yoon, Sang-Hyub;Ryu, Bong-Ha;Ryu, Ki-Won;Kim, Hyeon-Yil
    • The Journal of Internal Korean Medicine
    • /
    • v.25 no.2
    • /
    • pp.214-223
    • /
    • 2004
  • The study examines the anti-cancer effects of the hot water extract of Mylabris phalerata(MP) using SNU-C5 cell lines. Microscopic analysis showed that 12 hours after MP treatment, the number of dead cells increased prominently. Significant cell death was observed 12, 24, and 48 hours after MP treatment through trypan blue exclusion testing. This suggests that MP is time-dependently cytotoxic. Mitotracker Red CMXRos staining and flowcytometry revealed that MP decreased mitochondrial membrane potentials. The absence of peaks on PI staining showed that DNA damage occurred in MP treated cells. Taken together, measurements suggest that MP has a strong anti-cancer effect on SNU-5 cell lines, and that this is likely to be due to the destruction of mitochondria and DNA damage.

  • PDF

Expression of temperature responsive genes in cell cultures derived from Bombyx mori

  • Kim, Eun-Young;Kang, Min-Uk;Park, Kwan-Ho;Choi, Kwang-Ho;Nho, Si-Kab
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.31 no.2
    • /
    • pp.95-102
    • /
    • 2015
  • Insects are heterotherms that exhibit a close relationship between their ecology (especially temperature changes) and physiology. In the present study, selected genes associated with cell death and temperature were examined to determine gene expression in Bombyx mori in high and low temperature environments. We determined the amount of dsRNA, different concentrations of dsRNA, and different type of cells to set the conditions most efficient for RNAi. We then prepared dsRNA transcripts of the genes associated with cell death and temperature response. We analyzed cell damage via Trypan blue staining and found that cell viability was reduced after knockdown of these genes. The special transduced cell lines produced in the present study can be applied in various research fields. We also expect that these cell lines can be used as a research tool for the precise functional analysis of various genes.