• Title/Summary/Keyword: Tryout

Search Result 71, Processing Time 0.019 seconds

A Study on the Process Optimization by a Beadless Stamping (노비드스탬핑 공법을 이용한 공정최적화에 관한 연구)

  • Kim, S.H.;Shim, H.B.
    • Transactions of Materials Processing
    • /
    • v.21 no.8
    • /
    • pp.485-492
    • /
    • 2012
  • As the shape of stamped part is complicated and as the trend toward light weight continues, the higher level of difficulty is required in making stamping die because of inevitably poor formability. The poor formability can be improved if the material flow during the stamping is carefully controlled. Application of drawbead became commonsense used to retard metal flow of blank into the die cavity at the region where wrinkle is expected. In the study, the concept of beadless stamping process is proposed and the method how to realize the beadless stamping process is presented. The validity of the proposed method is confirmed by the application of the real auto part.

Improvement of the Stamping Process for Sheet Metal Prototypes of an Auto-body with Finite Element Analysis (유한요소해석을 이용한 차체시작부품 프레스성형 공정 개선)

  • Kim, Se-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.4
    • /
    • pp.496-504
    • /
    • 2011
  • This paper introduces a CAE-based design procedure in the press forming process for the fabrication of sheet metal parts used in proto-cars. The finite element analysis reveals formability problems during the forming process of a floor member and a front cross member that constitute a rear floor assembly. The study proposes the modification of the initial blank shape or intermediate trimming of the product to prevent failure during forming. It is confirmed by the tryout process as well as the finite element analysis that sound prototype can be obtained with the modified design. The finite element analysis result also provides fairly good prediction of springback amounts used for the post-compensation of the product.

Effect of Process Parameters on Hydroforming (Hydroforming 공정변수의 영향)

  • 권재욱;명노훈;이경돈
    • Transactions of Materials Processing
    • /
    • v.9 no.6
    • /
    • pp.615-623
    • /
    • 2000
  • The industrial application of hydroforming has a great potential in saying cost and achieving dimensional accuracy in automotive industry presently. The aim of the following article is to investigate the effect of process parameters on hydroformed part. Firstly, we have to investigate the change of mechanical properties for sheet and pipe material according to various radius/thickness ratio(r/t). The change of mechanical properties affects the yield stress more than the total elongation. Increase of yield stress for pipe has a bad influence on formability of hydroforming. Among the roll-forming process, the sizing process didn't change mechanical properties. The process parameters such as the initial pressure, mandrel shape and friction have seriously influenced on formability of hydroforming. Therefore we need to check formability of given material through the FE analysis in the beginning stage of process design and the predicted hydroforming process parameters ate generally a good starting point for the prototype tryout stage. The results of pretending, hydroforming analysis using FE model are good agreement with experimental results.

  • PDF

Development of The Pilotless Type Progressive Die for Thin Sheet Metal

  • Sim, Sung-Bo;Jang, Chan-Ho;Sung, Yul-Min
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.289-294
    • /
    • 2001
  • This study reveals the thin sheet metal Process with multi-forming die that the name is progressive die, also high precision production part is made. They require analysis of many kinds of important factors, i.e. theory and practice of metal press working and its phenomena, die structure, machining condition for die making, die material, heat treatment of die components, know-how and so on. In this study, we designed and constructed a multi-forming progressive die as a bending working of multi-stage and peformed through the try out. Out of the characteristics of this paper that nothing might be ever seen before such as this type of research method on the all of processes of thin and high precision production part.

  • PDF

Development of The Center Carrier Type Progressive Die for Thick Sheet Metal

  • Sim, Sung-Bo;Lee, Sung-Taeg;Song, Young-Seok;Baek, Dong-Hak
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.295-300
    • /
    • 2001
  • The progressive die performs a series of fundamental sheet metal working, particularly this study regards to develop the center carrier feeding type die for thick sheet metal(SS41, 2.5mm) production that is a specific division. In order to prevent defect on the production, the analysis of production part, optimum design of strip process layout, die design and die making and tryout etc. are necessary. In this study, we designed and predicted a progressive die of multi stages by wide collected data base and computer aided method.

  • PDF

A Study on the Development of Progressive Die for Cutoff Type U-Bending Process

  • Sim, Sung-Bo;Lee, Sung-Taeg;Jang, Chan-Ho
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.347-352
    • /
    • 2002
  • The Cut off-type progressive die for U-bending production part is a very specific division. This study reveals the sheet metal forming process with multi-forming die by Center Carrier type feeding system. Through the FEM simulation by DEFORM, it was accepted to u-bending process as the first performance to design of strip process layout. The next process of die development was studied according to sequence of die development, i.e. die structure, machining condition for die making, die materials, heat treatment of die components, know-how and so on. The feature of this study is the die development of scrapless progressive die of multi-stage through the Modeling on the I-DEAS program, components drawing on the Auto-Lisp, CAD/CAM application, ordinary machine tool operating and revision by tryout.

  • PDF

Study on Drawing Analysis of an Automotive Front Door and Stamping Die Manufacturing Process (프런트 도어의 드로잉 공정해석과 프레스 금형 제작 공정에 관한 연구)

  • Park, Yong-Guk
    • Transactions of Materials Processing
    • /
    • v.7 no.6
    • /
    • pp.586-593
    • /
    • 1998
  • In recent automotive industries there has been significant increase in applications of computer simulation to the manufacturing of stamping dies for inner and outer body panels which greatly affect durability and aesthetic quality of automobiles. Enhancement of die quality and reduction of total die manufacturing time and consequently manufacturing cost are the visible outcome. However to successfully apply the result of simulation by a commercial package to the die manufacturing development of an optimal die manufacturing process is required upon the completion of analysis of forte and shortcoming of available sheet metal forming softwares. Based on the results of numerical analysis of front door outer panel forming. this paper evaluates the applicability of simulation results to the real die manufacturing for automotive body panels. Also it attempts to select an optimal die manufacturing process including design machining and tryout. Lastly it discusses the expected effects by adopt-ing the selected process in a real stamping die manufacturing facility.

  • PDF

A STUDY ON CAE APPLICATION FOR FORMING(STAMPING) OF AUTOMOTIVE PANEL AND IMPROVEMENT OF DIE MANUFATURING PROCESS (자동차 PANEL 성형 CAE 적용 사례 연구 및 금형제작 PROCESS의 개선)

  • 박용국;김재훈;곽태수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.06a
    • /
    • pp.33-40
    • /
    • 1998
  • In recent domestic automotive industry, applications of computer simulation to the manufacturing of stamping dies for inner and outer body panels which greatly affect durability and aesthetic quality of automobiles, have been increased. Enhancement of die quality, and reduction of total die manufacturing time and consequently manufacturing cost are the visible outcome. However, to successfully apply the result of simulation by a commercial package to the die manufacturing, development of an optimal die manufacturing process is required upon the completion of analysis of forte and shortcomings of available sheet metal forming softwares in the market. Based on the results of numerical analysis of front door outer panel forming, this paper evaluates the applicability of simulation results to the real die making for automotive body panels. Also, it attempts to select an optimal die manufacturing process including design, machining and tryout. Lastly, it discusses the expected effects by adopting the selected process in a real stamping die manufacturing facility.

Development of Analysis System for Sheet Metal Forming (박판금속 성형고정 해석시스템 개발)

  • 정완진;조진우
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.06a
    • /
    • pp.83-94
    • /
    • 1998
  • An analysis system for sheet metal forming has been developed to improve the design and tryout process by predicting the deformation behaviour more precisely. This analysis system consists of forming analysis, springback analysis and post processor modules. The more accurate prediction of stress history can be achived due to the improved contact algorithm. Successive simulation of several processes can be carried out conveniently without interrupt by the improved data management of the developed system. The error of data transfer between forming analysis and springback analysis is minimized using the proper shell element. Several benchmark test results and practical results are presented to show the effectiveness and reliability of this program.

Study on the Cold Stamping Process Design Method of 1.5GPa Grade Front Side Rear Lower Member (1.5GPa급 Front Side Rear Lower Member 냉간 성형공정 설계기법 연구)

  • Nam, S.W.;Bae, G.H.
    • Transactions of Materials Processing
    • /
    • v.30 no.5
    • /
    • pp.236-241
    • /
    • 2021
  • This study describes the cold stamping process design procedure to secure the formability and dimensional accuracy of the automotive structural component fabricated by 1.5GPa grade ultra-high strength steel sheet. The target product is selected as the front side rear lower member which is the most important energy absorption part in the frontal impact condition. To secure the product quality, an intermediate product shape is added while considering the low elongation and high strength characteristics of 1470Mart. The sequential optimization procedure of the intermediate product shape, the fine dimensional quality is then achieved without any crack or wrinkling. The cold stamping method with ultra-high strength steel sheets is validated by conducting the die tryout of the front side rear lower member.