• Title/Summary/Keyword: Truss model

Search Result 432, Processing Time 0.026 seconds

Thermo-mechanical analysis of reinforced concrete slab using different fire models

  • Suljevic, Samir;Medic, Senad;Hrasnica, Mustafa
    • Coupled systems mechanics
    • /
    • v.9 no.2
    • /
    • pp.163-182
    • /
    • 2020
  • Coupled thermo-mechanical analysis of reinforced concrete slab at elevated temperatures from a fire accounting for nonlinear thermal parameters is carried out. The main focus of the paper is put on a one-way continuous reinforced concrete slab exposed to fire from the single (bottom) side as the most typical working condition under fire loading. Although contemporary techniques alongside the fire protection measures are in constant development, in most cases it is not possible to avoid the material deterioration particularly nearby the exposed surface from a fire. Thereby the structural fire resistance of reinforced concrete slabs is mostly influenced by a relative distance between reinforcement and the exposed surface. A parametric study with variable concrete cover ranging from 15 mm to 35 mm is performed. As the first part of a one-way coupled thermo-mechanical analysis, transient nonlinear heat transfer analysis is performed by applying the net heat flux on the exposed surface. The solution of proposed heat analysis is obtained at certain time steps of interest by α-method using the explicit Euler time-integration scheme. Spatial discretization is done by the finite element method using a 1D 2-noded truss element with the temperature nodal values as unknowns. The obtained results in terms of temperature field inside the element are compared with available numerical and experimental results. A high level of agreement can be observed, implying the proposed model capable of describing the temperature field during a fire. Accompanying thermal analysis, mechanical analysis is performed in two ways. Firstly, using the guidelines given in Eurocode 2 - Part 1-2 resulting in the fire resistance rating for the aforementioned concrete cover values. The second way is a fully numerical coupled analysis carried out in general-purpose finite element software DIANA FEA. Both approaches indicate structural fire behavior similar to those observed in large-scale fire tests.

Simulation Analysis on the Impact of Racing Car with Space Frame (스페이스 프레임을 가진 경주용 차량의 충돌에 관한 시뮬레이션 해석)

  • Cho, Jae-Ung;Bang, Seung-Ok;Kim, Key-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.7
    • /
    • pp.2341-2348
    • /
    • 2010
  • In this paper, strain and stress on space frame are analyzed at racing car under crash loads. As the deformation is reduced to a minimum during crash and the vulnerable parts are grasped, the safety of driver is ensured. The vehicle frame is modelled with truss structure by inputting the material property of carbon steel on finite element analysis. The increase of impulse momentum is due to speed change at frontal collision. This influence effected on vehicle frame is also analyzed by ANSYS program. The deformation of the frame is studied by applying the crash loads at front, side and rear directions. Though the influence on the seat of driver is small at frontal and rear crash, the deformation due to impact is progressed into this seat. The safety of frame is enhanced by making up for these weak deformations and these results of simulation analysis can be applied to the production of the actual vehicle frame.

Efficient Structral Safety Monitoring of Large Structures Using Substructural Identification (부분구조추정법을 이용한 대형구조물의 효율적인 구조안전도 모니터링)

  • 윤정방;이형진
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.2
    • /
    • pp.1-15
    • /
    • 1997
  • This paper presents substructural identification methods for the assessment of local damages in complex and large structural systems. For this purpose, an auto-regressive and moving average with stochastic input (ARMAX) model is derived for a substructure to process the measurement data impaired by noises. Using the substructural methods, the number of unknown parameters for each identification can be significantly reduced, hence the convergence and accuracy of estimation can be improved. Secondly, the damage index is defined as the ratio of the current stiffness to the baseline value at each element for the damage assessment. The indirect estimation method was performed using the estimated results from the identification of the system matrices from the substructural identification. To demonstrate the proposed techniques, several simulation and experimental example analyses are carried out for structural models of a 2-span truss structure, a 3-span continuous beam model and 3-story building model. The results indicate that the present substructural identification method and damage estimation methods are effective and efficient for local damage estimation of complex structures.

  • PDF

Strut-Tie Models and Load Distribution Ratios for Reinforced Concrete Beams with Shear Span-to-Effective Depth Ratio of Less than 3 (I) Models and Load Distribution Ratios (전단경간비가 3 이하인 철근콘크리트 보의 스트럿-타이 모델 및 하중분배율(I) 모델 및 하중분배율)

  • Chae, Hyun-Soo;Yun, Young Mook
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.3
    • /
    • pp.257-265
    • /
    • 2016
  • The failure behavior of reinforced concrete beams is governed by the mechanical relationships between the shear span-to-effective depth ratio, flexural reinforcement ratio, load and support conditions, and material properties. In this study, two simple indeterminate strut-tie models which can reflect all characteristics of the failure behavior of reinforced concrete beams were proposed. The proposed models are effective for the beams with shear span-to-effective depth ratio of less than 3. For each model, a load distribution ratio, defined as the fraction of load transferred by a truss mechanism, is also proposed to help structural designers perform the rational design of the beams by using the strut-tie model approaches of current design codes. In the determination of the load distribution ratios, the effect of the primary design variables including shear span-to-effective depth ratio, flexural reinforcement ratio, and compressive strength of concrete was reflected through numerous material nonlinear analysis of the proposed indeterminate strut-tie models. In the companion paper, the validity of the proposed models and load distribution ratios was examined by applying them to the evaluation of the failure strength of 335 reinforced concrete beams tested to failure by others.

Assessment of Visual Characteristics of Urban Bridges using Landscape Simulations - A Case Study of Yanghwaro in the Gyeongui Railroad Area - (경관시뮬레이션을 이용한 도시교량의 시각적 특성 평가 - 경의선 폐철구간 양화로 지역을 대상으로 -)

  • Chun, Hyun-Jin;Kim, Sung-Kyun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.38 no.3
    • /
    • pp.75-82
    • /
    • 2010
  • This study formed an estimation of the visual characteristics of urban bridges in Yanghwaro in the Gyeongui Railroad Area using a landscape simulation. Existing theses have formerly only suggested directions for design based on visual preference, but there is as yet no research on the practical process of landscape design. As a result, it is difficult to directly apply this to bridge design. This study found a potential bridge site and presented a direction for bridge design in order to improve the image of the surrounding urban landscape by surveying the visual effects and landscape preferences of different bridge types. An urban landscape was produced using a landscape simulation model and was made the background for the survey. Five bridge types--Girder, Arch, Truss, Cable and Suspension--were selected and presented. The shapes of the bridges were selected based on the floor plan. The results of this study are as follows. In a preference analysis, every bridge except Girder was evaluated as a positive influence. When rating the image, 'artificial' was rated significantly higher than other traits when assessing the background image. When the Girder Bridge was introduced, 'stable' and 'orderly' were both rated highly while 'stable', 'beautiful', 'orderly' and 'interesting' were high with the introduction of the Arch Bridge. 'Beautiful', 'stable', and 'orderly' were given a high value in the introduction of the Truss Bridge and every image except 'natural', 'harmony' and 'orderly' were highly rated in the introduction of the Cable Bridge. Further, every image but 'natural' was highly rated with the introduction of the Suspension Bridge. Based on the analysis of the landscape, there is a difference in preference before and after modeling a bridge type, while the bridge itself is an influence when it is the main object of the simulated scene. This study researched only the shape of the bridge as a part of the landscape but other elements such as stability, economics, and construction are also factors in the design of a bridge. Stability, economics, construction and other factors must be considered when selecting a bridge type in the future.

Failure Modes of RC Beams with High Strength Reinforcement (고강도 비틀림보강철근을 사용한 철근콘크리트 보의 파괴모드)

  • Yoon, Seok-Kwang;Lee, Su-Chan;Lee, Do-Hyeong;Lee, Jung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.2
    • /
    • pp.143-150
    • /
    • 2014
  • To avoid abrupt torsional failure due to concrete crushing before yielding of torsional reinforcement and control the diagonal crack width, design codes specify the limitations on the yield strength of torsional reinforcement of RC members. In 2012, Korean Concrete Institute design code increased the allowable maximum yield strength of torsional reinforcement from 400 MPa to 500 MPa based on the analytical and experimental research results. Although there are many studies regarding the shear behavior of RC members with high strength stirrups, limited studies of the RC members regarding the yield strength of torsional reinforcement are available. In this study, twelve RC beams having different yield strength of torsional reinforcement and compressive strength of concrete were tested. The experimental test results indicated that the torsional failure modes of RC beams were influenced by the yield strength of torsional reinforcement and the compressive strength of concrete. The test beams with normal strength torsional reinforcement showed torsional tension failure, while the test beams with high strength torsional reinforcement greater than 480 MPa showed torsional compression failure. Therefore, additional analytical and experimental works on the RC members subjected to torsion, especially the beams with high strength torsional reinforcement, are needed to find an allowable maximum yield strength of torsional reinforcement.

Bi-Axial Stress Field Analysis on Shear-Friction in RC Members (2축-응력장 이론을 이용한 철근콘크리트 부재의 전단마찰 해석)

  • Kim, Min-Joong;Lee, Gi-Yeol;Lee, Jun-Seok;Kim, Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.1
    • /
    • pp.25-35
    • /
    • 2012
  • For a member subjected to direct shear forces, forces are transferred across interface concrete area and resisted by shear transfer capacity. Shear-friction equations in recent concrete structural design provisions are derived from experimental test results where shear-friction capacity is defined as a function of steel reinforcement area contained in the interface. This empirical equation gave too conservative values for concrete members with large amounts of reinforcement. This paper presents a method to evaluate shear transfer strengths and to define ultimate conditions which result in crushing of concrete struts after yielding of longitudinal reinforcement perpendicular to the interface concrete. This method is based on the bi-axial stress field theory where different constitutive laws are applied in various means to gain accurate shear strengths by considering softening effects of concrete struts based on the modified compression-field theory and the softened truss model. The validity of the proposed method is examined by applying to some selected test specimens in literatures and results are compared with recent design code provisions. A general agreement is observed between predicted and measured values at ultimate loading stages in initially uncracked normal-strength concrete test.

Structural Safety Assessment Using Equation Error Function and Response Error Function (방정식 오차함수와 응답 오차함수를 사용한 구조 안전성 평가)

  • Park, Woo-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.10
    • /
    • pp.2819-2830
    • /
    • 2009
  • Load bearing structural members in a wide variety of applications accumulate damage over their service life. During experiment much effort and cost is needed for measuring structural safety assessment. The sparseness and errors of measured data have to be considered during the safety estimation of structures. This paper introduces parameter estimation and damage identification algorithm by a system identification using static and dynamic response. The equation error estimator and response error widely used in system identification are based on the minimization of least squared error between measured and calculated responses by a mathematical model of a structure. Since each estimator has a specific form of application in noisy environment and proposes different definitions for these forms. To study the behaviour of the estimators in noisy environment Using Monte Carlo simulation, and a data measured pertubation scheme is adopted to investigate the influence of measurement errors on identification results. The assessment result by static and dynamic response were compared, and the efficiency and applicabilities of the proposed algorithm are demonstrated through simulated static and dynamic responses of a dimensional truss type structures.

Effects of Geometric Characteristics on the Ultimate Behavior of Steel Cable-stayed Bridges (기하학적 특성이 강사장교의 극한 거동에 미치는 영향)

  • Kim, Seungjun;Shin, Do Hyoung;Choi, Byung Ho;Kang, Young Jong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6A
    • /
    • pp.327-336
    • /
    • 2012
  • This study presents the effects of various geometric properties on the ultimate behavior of steel cable-stayed bridges. In general, cable-stayed bridges are well known as a very efficient structural system, because of those geometric characteristics, but at the same time, the structure also shows complex structural behavior including various nonlinearities which significantly affect to the ultimate behavior of the structure. In this study, the effects of various geometric properties of main members on the ultimate behavior under specific live load cases, which had been studied in previous studies, were investigated using a rational analytical method. In this parametric study, sectional dimensions of main members were considered as main geometric parameters. For the rational ultimate analysis under specific live load cases, the 2-step analysis method, which contains initial shape analysis and live load analysis, was used. As the analysis model, 920.0 m long steel cable-stayed bridges were used and two different types of cable arrangement were considered to study the effect of the cable arrangement types. Through this study, the effects of various geometric properties on the characteristics of the ultimate behavior of steel cable-stayed bridges were intensively investigated.

A Study on Lightweight Design of Cantilever-type Helideck Using Topology Design Optimization (위상 최적설계를 활용한 캔틸레버식 헬리데크 경량화 연구)

  • Jung, Tae-Won;Kim, Byung-Mo;Ha, Seung-Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.5
    • /
    • pp.453-460
    • /
    • 2017
  • In the offshore industry, helicopters are mainly used for transportation of goods or operating personnel between offshore sites and onshore facilities. A helideck is a structure that is required for landing and take-off of helicopters on the offshore structure. There are several shapes of helidecks depending on the type of offshore structures or installation location. Among them, cantilever-type helidecks usually provide more space on the topside of offshore structures and it is safer against potential accidents like fire or explosion. In this paper, the cantilever-type helideck is selected for the research object and topology design optimization is applied for lightweight design of the helideck. A finite element model is then created from the optimal layout of truss structures of the helideck, and structural analysis is performed under various landing conditions and wind loads. Based on the analysis results, the detailed section dimensions of structural members are determined so that the maximum stress at each structure member does not exceed the allowable stress of the structural material. Also, the final optimal design shows significant decrease in the total weight of the helideck.