• Title/Summary/Keyword: Truss Structure

Search Result 460, Processing Time 0.028 seconds

Multi-stage approach for structural damage identification using particle swarm optimization

  • Tang, H.;Zhang, W.;Xie, L.;Xue, S.
    • Smart Structures and Systems
    • /
    • v.11 no.1
    • /
    • pp.69-86
    • /
    • 2013
  • An efficient methodology using static test data and changes in natural frequencies is proposed to identify the damages in structural systems. The methodology consists of two main stages. In the first stage, the Damage Signal Match (DSM) technique is employed to quickly identify the most potentially damaged elements so as to reduce the number of the solution space (solution parameters). In the second stage, a particle swarm optimization (PSO) approach is presented to accurately determine the actual damage extents using the first stage results. One numerical case study by using a planar truss and one experimental case study by using a full-scale steel truss structure are used to verify the proposed hybrid method. The identification results show that the proposed methodology can identify the location and severity of damage with a reasonable level of accuracy, even when practical considerations limit the number of measurements to only a few for a complex structure.

Structural Optimization By Adaptive Simulated Annealing's Cooling Schedule Change (어댑티브 시뮬레이티드 어넬링의 냉각스케줄에 따른 구조최적설계)

  • Jung, Suk-Hoon;Park, Jung-Sun
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1436-1441
    • /
    • 2003
  • Recently, simulated annealing algorithms have widely been applied to many structural optimization problems. In this paper, simulated annealing, boltzmann annealing, fast annealing and adaptive simulated annealing are applied to optimization of truss structures for improvement quality of objective function and number of function evaluation. These algorithms are classified by cooling schedule. The authors have changed parameters of ASA's cooling schedule and the influence of cooling schedule parameters on structural optimization obtained is discussed. In addition, cooling schedule of BA and ASA mixed is applied to 10 bar-truss structure.

  • PDF

Consequence-based robustness assessment of a steel truss bridge

  • Olmati, Pierluigi;Gkoumas, Konstantinos;Brando, Francesca;Cao, Liling
    • Steel and Composite Structures
    • /
    • v.14 no.4
    • /
    • pp.379-395
    • /
    • 2013
  • Aim of this paper is to apply to a steel truss bridge a methodology that takes into account the consequences of extreme loads on structures, focusing on the influence that the loss of primary elements has on the structural load bearing capacity. In this context, the topic of structural robustness, intended as the capacity of a structure to withstand damages without suffering disproportionate response to the triggering causes while maintaining an assigned level of performance, becomes relevant. In the first part of this study, a brief literature review of the topics of structural robustness, collapse resistance and progressive collapse takes place, focusing on steel structures. In the second part, a procedure for the evaluation of the structural response and robustness of skeletal structures under impact loads is presented and tested in simple structures. Following that, an application focuses on a case study bridge, the extensively studied I-35W Minneapolis steel truss bridge. The bridge, which had a structural design particularly sensitive to extreme loads, recently collapsed for a series of other reasons, in part still under investigation. The applied method aims, in addition to the robustness assessment, at increasing the collapse resistance of the structure by testing alternative designs.

Structural Layout Design for Concrete Structures Based on the Repeated Control Method by Using Micro Lattice Truss Model (마이크로 격자트러스모델을 이용한 반복강성제어법에 의한 콘크리트 구조형태의 최적화)

  • Choi, Ik-Chang;Ario, Ichiro
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.705-712
    • /
    • 2008
  • This study carried out simulation for structural layout design for concrete structures by using the models of the ground structure method. The micro lattice truss is modeled as assemblage of a number of unit cells. The progress of analysis repeat to undergo finite element analysis to feed-back results of stress to the stiffness of each member. Through the repeated this analysis, truss model is represented to form the topological materials and the structural shape with the use of the local stress condition without mathematical optimum tools. It is successful to analyse the shape-layout problem as numerical samples on the lattice truss model.

Mesoscopic numerical analysis of reinforced concrete beams using a modified micro truss model

  • Nagarajan, Praveen;Jayadeep, U.B.;Madhavan Pillai, T.M.
    • Interaction and multiscale mechanics
    • /
    • v.3 no.1
    • /
    • pp.23-37
    • /
    • 2010
  • Concrete is a heterogeneous material consisting of coarse aggregate, mortar matrix and interfacial zones at the meso level. Though studies have been done to interpret the fracture process in concrete using meso level models, not much work has been done for simulating the macroscopic behaviour of reinforced concrete structures using the meso level models. This paper presents a procedure for the mesoscopic analysis of reinforced concrete beams using a modified micro truss model. The micro truss model is derived based on the framework method and uses the lattice meshes for representing the coarse aggregate (CA), mortar matrix, interfacial zones and reinforcement bars. A simple procedure for generating a random aggregate structure is developed using the constitutive model at meso level. The study reveals the potential of the mesoscopic numerical simulation using a modified micro truss model to predict the nonlinear response of reinforced concrete structures. The modified micro truss model correctly predicts the load-deflection behaviour, crack pattern and ultimate load of reinforced concrete beams failing under different failure modes.

Strategy to increase distortional rigidity of crane box girder: Staggered truss diaphragm

  • Yangzhi Ren;Wenjing Guo;Xuechun Liu;Bin Wang;Piyong Yu;Xiaowen Ji
    • Structural Engineering and Mechanics
    • /
    • v.86 no.4
    • /
    • pp.461-472
    • /
    • 2023
  • This paper proposes a novel method for increasing the distortional frame rigidity of off-rail box girder bridges for cranes by reinforcing the diaphragm with staggered truss. The study starts by using the Matrix Displacement Method to determine the shear angle of the staggered truss diaphragm under two assumptions: hinge joint and rigid joint. To obtain closed-form solutions for the transversal and longitudinal deformations and warping stress of the crane girder, the study employs the Initial Parameter Method and considers the compatibility of shear deformation at joints between the diaphragms and the girder. The theoretical solutions are validated through finite element analysis, which also confirms that the hinge-joint assumption accurately represents the shear angle of the staggered truss diaphragm in girder distortion. Additionally, the study conducts extensive parameter analyses to examine the impact of staggered truss dimensions on distortional stress and deformation. Furthermore, the study compares the distortional warping stresses of crane girders reinforced with staggered truss diaphragms and those reinforced with perforated ones, emphasizing the importance of incorporating stagger truss in diaphragms. Overall, this paper provides a thorough evaluation of the proposed approach's effectiveness in enhancing the distortional frame rigidity of off-rail box girder bridges for cranes. The findings offer valuable insights into the design and reinforcement of diaphragms using staggered truss to enhance the structural performance of crane girders.

Inelastic Nonlinear Analysis of Plane Truss Structures Using Arc-Length Method (호장법을 이용한 평면 트러스 구조의 비탄성 비선형 해석)

  • Kim, Kwang-Joong;Baek, Ki-Youl;Lee, Jae-Hong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.1
    • /
    • pp.41-48
    • /
    • 2008
  • Spatial structure is an appropriate shape that resists external force only with in-plane forte by reducing the influence of bending moment, and it maximizes the effectiveness of structure system. the spatial structure should be analyzed by nonlinear analysis regardless static and dynamic analysis because it accompanys large deflection for member. To analyze the spatial structure geometrical and material nonlinearity should be considered in the analysis. In this paper, a geometrically nonlinear finite element model for plane truss structures is developed, and material nonlinearity is also included in the analysis. Arc-length method is used to solve the nonlinear finite element model. It is found that the present analysis predicts accurate nonlinear behavior of plane truss.

  • PDF

Damage Detection of Truss Structures Using Extended Projection Filter (확장사영필터를 이용한 트러스 구조물의 손상 검출)

  • Suh, Ill-Gyo;Lim, Eun-Ji
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.4
    • /
    • pp.195-201
    • /
    • 2005
  • In this paper, a study of damage measures for truss structures using the Extended Projection filter theory is presented. Many researchers are interested in inverse problems and one of solution procedures for inverse problems that are very effective is the approach using the filtering algorithm in conjunction with numerical solution methods. In this paper, the projection filtering in conjunction with structural analysis is applied to the identification of damages in truss structures. And, the effectiveness of proposed method is verified through the numerical examples of a free vibrating structure.

Hydrodynamic response of alternative floating substructures for spar-type offshore wind turbines

  • Wang, Baowei;Rahmdel, Sajad;Han, Changwan;Jung, Seungbin;Park, Seonghun
    • Wind and Structures
    • /
    • v.18 no.3
    • /
    • pp.267-279
    • /
    • 2014
  • Hydrodynamic analyses of classic and truss spar platforms for floating offshore wind turbines (FOWTs) were performed in the frequency domain, by considering coupling effects of the structure and its mooring system. Based on the Morison equation and Diffraction theory, different wave loads over various frequency ranges and underlying hydrodynamic equations were calculated. Then, Response Amplitude Operators (RAOs) of 6 DOF motions were obtained through the coupled hydrodynamic frequency domain analysis of classic and truss spar-type FOWTs. Truss spar platform had better heave motion performance and less weight than classic spar, while the hydrostatic stability did not show much difference between the two spar platforms.

A study on behavior of lateral-vibration about Railway truss bridge (철도트러스 교량의 횡진동 특성에 관한 연구)

  • Yoo Seoung-Hun;Cho Sun-Kyu;Oh Ji-Taek
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.916-921
    • /
    • 2004
  • At present, the highest operation speed of general domestic train is in the level of 140km/h and it is being improved to reach at the level of 200km/h in 2011. The improved environment of train operation speed which inevitably occurs owing to the operation of KTX on the existing line badly requires technology development such as testing and evaluating technology of factors hindering high speed of railway infrastructure including railway bridge, technology to ensure operation safety and technology to evaluate structure stability. Comparing dynamic numerical interpretation for railway truss bridge and load of design standard by using dynamic response measurement and analysis for the railway truss bridge currently in use, this study established the improvement program to ensure the lateral dynamic safety of truss bridge with the increased speed of train.

  • PDF