• Title/Summary/Keyword: Truss

Search Result 1,179, Processing Time 0.025 seconds

Truss Models for Deformation Analyses of RC Members (트러스 모델을 이용한 RC 부재의 변형 해석)

  • 홍성걸;이수곤
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.201-206
    • /
    • 2001
  • This paper presents truss model that can be used to determine the deformation as well as strength of RC members. This model is constituted to address plastic hinge rotation at tile deformation concentrated regions under severe lateral load. The behavior of each element of truss model is evaluated on the basis of stress field analysis. The deformation is obtained by combining element deformations with joint rotation. Initial strength is calculated at the first failure of any element, and strength deterioration after failure depends on the strength reduction of this element. The proposed model will provide useful tools in seismic design of ductility-required members.

  • PDF

Truss Model for Bar Development in Beam End Region (보 단부의 정착에 관한 트러스 모델)

  • 김대진;홍성걸
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.659-664
    • /
    • 1999
  • The majority of published conclusions about structural configuration effects of bond strength were based on the observed performance of test specimens and their interpretations are mostly empirical and statistical. The empirical and statistical interpretation on bond strength have to be replaced by rational models based on simple, sound and verifiable mechanical principles. It is likely that such models also represent the key to a deeper understanding of some existing experimental data on bond strength. The presented truss model is capable of explaining failure modes involving bond slip that cannot be explained by current truss model.

  • PDF

A Study on the Shear Behavior Prediction of Reinforced Concrete Beams Using Truss Model (트러스 모델을 이용한 철근콘크리트 보의 전단거동 예측에 관한 연구)

  • 김상우;이정윤
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.595-600
    • /
    • 2000
  • The shear strength and strain of reinforced concrete beams are predicted by using the Transformated-Angle Truss-Model. This proposed analytical method simplified the fixed-angle softened-truss model (FA-STM) and removed the limitation of applicability of the FA-STM. The results of the proposed method for reinforced concrete beams were compared to those of the FA-STM.

  • PDF

A Study on Damage Evaluations of Truss for Large Structure Health Monitoring (대형 구조물 상태평가를 위한 트러스 구조물 손상 평가에 관한 연구)

  • Lee, Jong-Ho;Kim, Seon-Gyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.130-131
    • /
    • 2016
  • This study was performed for application of Structural Health Monitoring system of large structures. In order to evaluate damage of a structure, strain data of truss members that are changing with damage are gained by FEM analysis program. These data are used to train Artificial Neural Network(ANN), and this ANN algorithm can be used to analysis strain data for evaluating damage of the truss members.

  • PDF

Prediction of Shear Stress-Strain Relationship of Reinforced Concrete Columns using Transformation Angle Truss Model (변환각 트러스 모델에 의한 철근콘크리트 기둥의 전단응력-전단변형률 관계 예측)

  • Kim Sang-Woo;Chai Hyee-Dai;Lee Jung-Yoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.361-364
    • /
    • 2004
  • This paper predicts the shear stress-strain relationship of reinforced concrete columns using Transformation Angle Truss Model (TATM) considered bending moment and axial force effects. Nine columns with various shear span-to-depth ratios and axial force ratios were tested to verify the theoretical results obtained from TATM. Shear stress-strain relationship obtained from TATM was agreed well with test results conducted by bis study than other truss models.

  • PDF

Damage Detection of Truss Structures Using Extended Projection Filter (확장사영필터를 이용한 트러스 구조물의 손상 검출)

  • Suh, Ill-Gyo;Lim, Eun-Ji
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.4
    • /
    • pp.195-201
    • /
    • 2005
  • In this paper, a study of damage measures for truss structures using the Extended Projection filter theory is presented. Many researchers are interested in inverse problems and one of solution procedures for inverse problems that are very effective is the approach using the filtering algorithm in conjunction with numerical solution methods. In this paper, the projection filtering in conjunction with structural analysis is applied to the identification of damages in truss structures. And, the effectiveness of proposed method is verified through the numerical examples of a free vibrating structure.

A Study for Stress Distribution of the High-voltage Transmission Tower Under Wind Forces (풍하중이 작용하는 고용량 송전철탑의 해석을 통한 응력 분포 고찰)

  • Chang, Jin-Won;Kim, Seung-Jun;Park, Jong-Sub;Kang, Young-Jong
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.75-78
    • /
    • 2007
  • The structural methodology in designing a transmission tower have been performed to assume a simple truss behavior. But there're quite differences between a simple truss behavior and a real one. A suitable explanation for a structural stability can be expressed as a semi-rigid connection instead of the assumed hinged connection. This study proposes an alternative structural analysis modelling strategy for the transmission tower design. Proposed element models are truss element model, beam element model, and combined beam-truss element model. The static finite element analysis shows that there's a moment distribution between a mainpost member and the other bracing member.

  • PDF

Structure-Control Combined Optimal Design of 3-D Truss Structure Considering Intial State and Feedback Gain

  • Park, Jung-Hyen
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.4
    • /
    • pp.66-72
    • /
    • 2003
  • This paper proposes an optimum, problematic design for structural and control systems, taking a 3-D truss structure as an example. The structure is subjected to initial static loads and time-varying disturbances. The structure is controlled by a state feedback H$_{\infty}$ controller which suppress the effects of disturbances. The design variables are the cross sectional areas of truss members. The structural objective function is the structural weight. For the control objective, we consider two types of performance indices, The first function represents the effect of the initial loads. The second function is the norm of the feedback gain, These objective functions are in conflict with each other but are transformed into one control objective by the weighting method. The structural objectives is treated as the constraint, By introducing the second control objective which considers the magnitude of the feedback gain, we can create a design to model errors.

Effect of direct member loading on space truss behaviour

  • El-Sheikh, Ahmed
    • Structural Engineering and Mechanics
    • /
    • v.10 no.1
    • /
    • pp.1-15
    • /
    • 2000
  • It is inevitable that every space truss structure would be under some form of direct member loading. At least the structure self weight certainly affects the members directly, and in structures involving top concrete slabs or cladding, their weight is also likely to apply some lateral pressure on the members. In spite of that, direct member loading is usually ignored in space truss designs and assumed to lead only to a negligible effect on truss performance. This study is intended to explore this point and identify the actual effects that can arise from direct member loading, and eventually provide an answer to the question of whether the current design practice is satisfactory or certain modifications would be needed. After presenting two analytical techniques to allow the study of space trusses with laterally loaded members, the paper describes a wide parametric study involving practical-size space trusses with different configurations, aspect ratios, boundary conditions and number of chord panels.

Stirrup Stress in Reinforced Concrete Beams (철근콘크리트 보의 스터럽응력)

  • 김주영;박경호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.585-590
    • /
    • 1999
  • There is still a lack of knowledge and modelling relating to shear behaviour in reinforced concrete beams. The reason is that shear loading leads to complicated physical mecanisms, such as interlock action, dowel action, etc. Therefore, It is difficult that we make the ideal model of shear behaviour, while Truss model theory has been made good use of shear design because of simplicity and reasonableness. In this study, 6 T-type reinforced concrete beams were designed and made based on the two truss models, i.e, the plasticity truss model and the compatibility truss model, to observe shear strength of concrete and stress distribution of stirrups. 6 beams test pieces were tested with the following testing parameters. 1) specified concrete strength ; 270kg/$\textrm{cm}^2$, 400kg/$\textrm{cm}^2$ 2) with and without the steel fiber.

  • PDF