• Title/Summary/Keyword: Truncation artifact

Search Result 7, Processing Time 0.018 seconds

Using Bayesian Approaches to Reduce Truncation Artifact in Magnetic Resonance Imaging

  • Lee, Su-Jin
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.6
    • /
    • pp.585-593
    • /
    • 1998
  • In Fourier magnetic resonance imaging (MRI), the number of phase encoded signals is often reduced to minimize the duration of the studies and maintain adequate signal-to-noise ratio. However, this results in the well-known truncation artifact, whose effect manifests itself as blurring and ringing in the image domain. In this paper, we propose a new regularization method in the context of a Bayesian framework to reduce truncation artifact. Since the truncation artifact appears in t도 phase direction only, the use of conventional piecewise-smoothness constraints with symmetric neighbors may result in the loss of small details and soft edge structures in the read direction. Here, we propose more elaborate forms of constraints than the conventional piecewise-smoothness constraints, which can capture actual spatial information about the MR images. Our experimental results indicate that the proposed method not only reduces the truncation artifact, but also improves tissue regularity and boundary definition without oversmoothing soft edge regions.

  • PDF

Development of a truncation artifact reduction method in stationary inverse-geometry X-ray laminography for non-destructive testing

  • Kim, Burnyoung;Yim, Dobin;Lee, Seungwan
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1626-1633
    • /
    • 2021
  • In an industrial field, non-destructive testing (NDT) is commonly used to inspect industrial products. Among NDT methods using radiation sources, X-ray laminography has several advantages, such as high depth resolution and low computational costs. Moreover, an X-ray laminography system with stationary source array and compact detector is able to reduce mechanical motion artifacts and improve inspection efficiency. However, this system, called stationary inverse-geometry X-ray laminography (s-IGXL), causes truncation artifacts in reconstructed images due to limited fields-of-view (FOVs). In this study, we proposed a projection data correction (PDC) method to reduce the truncation artifacts arisen in s-IGXL images, and the performance of the proposed method was evaluated with the different number of focal spots in terms of quantitative accuracy. Comparing with conventional techniques, the PDC method showed superior performance in reducing truncation artifacts and improved the quantitative accuracy of s-IGXL images for all the number of focal spots. In conclusion, the PDC method can improve the accuracy of s-IGXL images and allow precise NDT measurements.

Truncation Artifact Reduction Using Weighted Normalization Method in Prototype R/F Chest Digital Tomosynthesis (CDT) System (프로토타입 R/F 흉부 디지털 단층영상합성장치 시스템에서 잘림 아티팩트 감소를 위한 가중 정규화 접근법에 대한 연구)

  • Son, Junyoung;Choi, Sunghoon;Lee, Donghoon;Kim, Hee-Joung
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.1
    • /
    • pp.111-118
    • /
    • 2019
  • Chest digital tomosynthesis has become a practical imaging modality because it can solve the problem of anatomy overlapping in conventional chest radiography. However, because of both limited scan angle and finite-size detector, a portion of chest cannot be represented in some or all of the projection. These bring a discontinuity in intensity across the field of view boundaries in the reconstructed slices, which we refer to as the truncation artifacts. The purpose of this study was to reduce truncation artifacts using a weighted normalization approach and to investigate the performance of this approach for our prototype chest digital tomosynthesis system. The system source-to-image distance was 1100 mm, and the center of rotation of X-ray source was located on 100 mm above the detector surface. After obtaining 41 projection views with ${\pm}20^{\circ}$ degrees, tomosynthesis slices were reconstructed with the filtered back projection algorithm. For quantitative evaluation, peak signal to noise ratio and structure similarity index values were evaluated after reconstructing reference image using simulation, and mean value of specific direction values was evaluated using real data. Simulation results showed that the peak signal to noise ratio and structure similarity index was improved respectively. In the case of the experimental results showed that the effect of artifact in the mean value of specific direction of the reconstructed image was reduced. In conclusion, the weighted normalization method improves the quality of image by reducing truncation artifacts. These results suggested that weighted normalization method could improve the image quality of chest digital tomosynthesis.

The Evaluation of the Difference of the SUV Caused by DFOV Change in PET/CT (PET/CT 검사에서 확대된 표시시야가 표준섭취계수에 미치는 영향 평가)

  • Kwak, In-Suk;Lee, Hyuk;Choi, Sung-Wook;Seok, Jae-Dong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.2
    • /
    • pp.13-20
    • /
    • 2011
  • Purpose: The limited FOV(Field of View) of CT (Computed Tomography) can cause truncation artifact at external DFOV (Display Field of View) in PET/CT image. In our study, we measured the difference of SUV and compared the influence affecting to the image reconstructed with the extended DFOV. Materials and Methods: NEMA 1994 PET Phantom was filled with $^{18}F$(FDG) of 5.3 kBq/mL and placed at the center of FOV. Phantom images were acquired through emission scan. Shift the phantom's location to the external edge of DFOV and images were acquired with same method. All of acquired data through each experiment were reconstructed with same method, DFOV was applied 50 cm and 70 cm respectively. Then ROI was set up on the emission image, performed the comparative analysis SUV. In the clinical test, patient group shown truncation artifact was selected. ROI was set up at the liver of patient's image and performed the comparative analysis SUV according to the change of DFOV. Results: The pixel size was increase from 3.91 mm to 5.47 mm according to the DFOV increment in the centered location phantom study. When extended DFOV was applied, $_{max}SUV$ of ROI was decreased from 1.49 to 1.35. In case of shifted the center of phantom location study, $_{max}SUV$ was decreased from 1.30 to 1.20. The $_{max}SUV$ was 1.51 at the truncated region in the extended DFOV. The difference of the $_{max}SUV$ was 25.9% higher at the outside of the truncated region than inside. When the extended DFOV was applied, $_{max}SUV$ was decreased from 3.38 to 3.13. Conclusion: When the extended DFOV was applied, $_{max}SUV$ decreasing phenomenon can cause pixel to pixel noise by increasing of pixel size. In this reason, $_{max}SUV$ was underestimated. Therefore, We should consider the underestimation of quantitative result in the whole image plane in case of patient study applied extended DFOV protocol. Consequently, the result of the quantitative analysis may show more higher than inside at the truncated region.

  • PDF

Hardware Implementation of EBCOT TIER-1 for JPEG2000 Encoder (JPEG2000 Encoder를 위한 EBCOT Tier-1의 하드웨어 구현)

  • Lee, Sung-Mok;Jang, Won-Woo;Cho, Sung-Dae;Kang, Bong-Soon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.11 no.2
    • /
    • pp.125-131
    • /
    • 2010
  • This paper presents the implementation of a EBCOT TIER-1 for JPEG2000 Encoder. JPEG2000 is new standard for the compression of still image for overcome the artifact of JPEG. JPEG2000 standard is based on DWT(Discrete Wavelet Transform) and EBCOT Entropy coding technology. EBCOT(Embedded block coding with optimized truncation) is the most important technology that is compressed the image data in the JPEG2000. However, EBCOT has the artifact because the operations are bit-level processing and occupy the harf of the computation time of JPEG2000 Compression. Therefore, in this paper, we present modified context extraction method for enhance EBCOT computational efficiency and implemented MQ- Coder as arithmetic coder. The proposed system is implemented by Verilog-HDL, under the condition of TSMC 0.25um ASIC library, gate counts are 30,511EA and satisfied the 50MHz operating condition.

Reconstruction of In-beam PET for Carbon therapy with prior-knowledge of carbon beam-track

  • Kim, Kwangdon;Bae, Seungbin;Lee, Kisung;Chung, Yonghyun;An, Sujung;Joung, Jinhun
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.6
    • /
    • pp.384-390
    • /
    • 2015
  • There are two main artifacts in reconstructed images from in-beam positron emission tomography (PET). Unlike generic PET, in-beam PET uses the annihilation photons that occur during heavy ion therapy. Therefore, the geometry of in-beam PET is not a full ring, but a partial ring that has one or two openings around the rings in order for the hadrons to arrive at the tumor without prevention of detector blocks. This causes truncation in the projection data due to an absence of detector modules in the openings. The other is a ring artifact caused by the gaps between detector modules also found in generic PET. To sum up, in-beam PET has two kinds of gap: openings for hadrons, and gaps between the modules. We acquired three types of simulation results from a PET system: full-ring, C-ring and dual head. In this study, we aim to compensate for the artifacts that come from the two types of gap. In the case of truncation, we propose a method that uses prior knowledge of the location where annihilations occur, and we applied the discrete-cosine transform (DCT) gap-filling method proposed by Tuna et al. for inter-detector gap.

Rotating-Gantry-Based X-Ray Micro-Tomography System with the Sliding Mechanism Capable of Zoom-In Imaging

  • Cho, Min-Hyoung;Lee, Dong-Hun;Han, Byung-Hee;Lee, Soo-Yeol
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.2
    • /
    • pp.107-113
    • /
    • 2008
  • We introduce a rotating-gantry-based x-ray micro-tomography system to be used for small animal imaging studies. It has the zoom-in imaging capability for high resolution imaging of a local region inside the animal subject without any contrast anomalies arising from truncation of the projection data. With the sliding mechanism mounted on the rotating gantry holding the x-ray source and the x-ray detector, we can control the magnification ratio of the x-ray projection data. By combining the projection data from the large field of view (FOV) scan of the whole animal subject and the projection data from the small FOV scan of the region of interest, we can obtain artifact-free zoomed-in images of the region of interest. For the acquisition of x-ray projection data, we use a $1248{\times}1248$ flat-panel x-ray detector with the pixel pitch of 100 mm. It has been experimentally found that the developed system has the spatial resolution of up to 121p/mm when the highest magnification ratio of 5:1 is applied to the zoom-in imaging. We present some in vivo rat femur images to demonstrate utility of the developed system for small animal imaging.