• Title/Summary/Keyword: Truncated protein

Search Result 146, Processing Time 0.025 seconds

Determination of subcellular localization of Betanodavirus B2

  • Kim, Yeong-Mi;Cha, Seung-Ju;Mun, Chang-Hun;Do, Jeong-Wan;Park, Jeong-U
    • Proceedings of the Korean Aquaculture Society Conference
    • /
    • 2006.05a
    • /
    • pp.476-478
    • /
    • 2006
  • To analyze subcellular localization of betanodavirus protein B2, a plasmid expressing Betanodavirus protein B2 fused to enhanced green fluorescent protein (EGFP-Nl) was constructed. The transient expression of full-length B2 fused to EGFP in GF cells confirmed the equal distribution of protein B2 between cytoplasm and nucleus. However, transfection of N-terminal half of the B2 revealed that this truncated form predominantly localized to the cytoplasm. By using several deletion mutants and point mutants, we determined the regions and/or motif responsible for the subcellular localization of betanodavirus.

  • PDF

Immunogenicity of Recombinant Outer Membrane Protein H from Pasteurella multocida (재조합 파스튜렐라 외막 단백질 H의 면역원성 검정)

  • Lee Jeong-Min
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.3
    • /
    • pp.273-277
    • /
    • 2006
  • To investigate the antigenicity and protective immunity of outer membrane protein H (OmpH) in Pasteurella multocida D:4, the recombinant OmpH protein was produced in Escherichia coli. The truncated and Trx-fused form of recombinant OmpH (53 kDa) was purified, and used as an antigen in the immunization and challenge experiment. The immunized mice with the recombinant OmpH produced a high-titer antibody, and had protective immunity against P. multocida as same level as the mice immunized with formalin-killed whole cell.

Generation and Expression of Amino-Terminal Domain of the Gene Coding for the Lumazine Protein from Photobacterium phosphoreum (발광 박테리아 Photobacterium phosphoreum의 Lumazine Protein을 코드 하는 유전자의 염기 서열 분석 및 발현)

  • Woo Young-Eun;Kim So-Young;Lee Chan-Yong
    • Korean Journal of Microbiology
    • /
    • v.41 no.4
    • /
    • pp.306-311
    • /
    • 2005
  • In this study, the amino-terminal half truncated lump and the whole lump genes from Photobacterium phosphoreum coding for the lumazine protein were cloned by polymerase chain reaction and expressed in Escherichia coli. To identifiy of the binding site of the ligand or substrate, the amino acid identities from the sequences of the lumazine protein, yellow fluorescent protein, and riboflavin synthase from different organisms were also compared and analyzed.

Novel Bacterial Surface Display System Based on the Escherichia coli Protein MipA

  • Han, Mee-Jung
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.7
    • /
    • pp.1097-1103
    • /
    • 2020
  • Bacterial surface display systems have been developed for various applications in biotechnology and industry. Particularly, the discovery and design of anchoring motifs is highly important for the successful display of a target protein or peptide on the surface of bacteria. In this study, an efficient display system on Escherichia coli was developed using novel anchoring motifs designed from the E. coli mipA gene. Using the C-terminal fusion system of an industrial enzyme, Pseudomonas fluorescens lipase, six possible fusion sites, V140, V176, K179, V226, V232, and K234, which were truncated from the C-terminal end of the mipA gene (MV140, MV176, MV179, MV226, MV232, and MV234) were examined. The whole-cell lipase activities showed that MV140 was the best among the six anchoring motifs. Furthermore, the lipase activity obtained using MV140 as the anchoring motif was approximately 20-fold higher than that of the previous anchoring motifs FadL and OprF but slightly higher than that of YiaTR232. Western blotting and confocal microscopy further confirmed the localization of the fusion lipase displayed on the E. coli surface using the truncated MV140. Additionally the MV140 motif could be used for successfully displaying another industrial enzyme, α-amylase from Bacillus subtilis. These results showed that the fusion proteins using the MV140 motif had notably high enzyme activities and did not exert any adverse effects on either cell growth or outer membrane integrity. Thus, this study shows that MipA can be used as a novel anchoring motif for more efficient bacterial surface display in the biotechnological and industrial fields.

Structure studies of Pulmonary Surfactant Protein B(SP-B(3,4)) by NMR Spectroscopy and Molecular Modeling

  • Kim, Yangmee;Dongha Baek;Kang, Joo-Hyun;Shin, Song-Yub;Hahm, Kyung-Soo
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.5 no.1
    • /
    • pp.37-45
    • /
    • 2001
  • Synthetic pulmonary surfactants consisting of a mixture of phospholipids with synthetic peptides based on human surfactant-associated protein SP-B were prepared. These surfactants were analyzed f3r their secondary structures by circular dichroism (CD) spectroscopy and NMR spectroscopy. Two synthetic peptides (SP-B(3), SP-B(4)) combined with the phospholipid mixture displayed significant surfactant properties. The CD spectra showed that the u-helical propensities of the peptides in DPC micelles. In the NMR spectroscopy, the tertiary structures of SP-B(3) show that it has $\alpha$-helical structure from Gln5 to Arg13 in DPC micelle and SP-B(4) show that they have $\alpha$-helical structure from Gln5 to Leu12 in DPC micelle. Based on these structures, truncated peptides originated from SP-B protein, can be designed as effective synthetic surfactants for clinical use.

  • PDF

Expression, Purification and NMR studies of SH3YL1 SH3 domain

  • Shrestha, Pravesh;Yun, Ji-Hye;Lee, Weon-Tae
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.14 no.2
    • /
    • pp.105-116
    • /
    • 2010
  • SH3YL1, a novel protein containing one Src homology 3 domain at the carboxyl terminus was first detected in mouse anagen skin cDNA. This protein had a significant homology with YHRO 16c/Ysc 84, the yeast Src homology 3 domain-containing protein. The sequence identity was remarkable at the carboxyl and amino-terminal Src homology 3 domain, suggesting that the novel protein is a mouse homolog of the yeast protein and thus was termed as SH3YL1. SH3YL1 is composed of two domains, a DUF500 at N-termini and a SH3 domain at C-termini. In our study we cloned the SH3 domain in bacterial expression system in Escherichia coli using pET32a vector with TEV protease cleavage site and purified as a monomer using affinity chromatography. The N-terminal poly-Histidine tag was cleaved with TEV protease and target protein was used for backbone studies. Our study showed that SH3 domain primarily consists of $\beta$-sheet which is in consistence with previous result performed on the truncated SH3 domain of SH3YL1.

Mitochondrial Location of Severe Acute Respiratory Syndrome Coronavirus 3b Protein

  • Yuan, Xiaoling;Shan, Yajun;Yao, Zhenyu;Li, Jianyong;Zhao, Zhenhu;Chen, Jiapei;Cong, Yuwen
    • Molecules and Cells
    • /
    • v.21 no.2
    • /
    • pp.186-191
    • /
    • 2006
  • Severe acute respiratory syndrome-associated coronavirus (SARS-CoV), a distant member of the Group 2 coronaviruses, has recently been identified as the etiological agent of severe acute respiratory syndrome (SARS). The genome of SARS-CoV contains four structural genes that are homologous to genes found in other coronaviruses, as well as six subgroup-specific open reading frames (ORFs). ORF3 encodes a predicted 154-amino-acid protein that lacks similarity to any known protein, and is designated 3b in this article. We reported previously that SARS-CoV 3b is predominantly localized in the nucleolus, and induces G0/G1 arrest and apoptosis in transfected cells. In this study, we show that SARS-CoV 3b fused with EGFP at its N- or C- terminus co-localized with a mitochondriaspecific marker in some transfected cells. Mutation analysis of SARS-CoV 3b revealed that the domain spanning amino acids 80 to 138 was essential for its mitochondria localization. These results provide new directions for studies of the role of SARS-CoV 3b protein in SARS pathogenesis.

Molecular Characterization of crp, the Cyclic AMP Receptor Protein Gene of Serratia marcescens KTCC 1272

  • Yoo, Ju-Soon;Kim, Hae-Sun;Chung, Soo-Yeol;Choi, Yong-Lark
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.5
    • /
    • pp.670-676
    • /
    • 2000
  • Several clones obtained from Serratia marcescens stimulated E. coli TP2139 (${\Delta}lac, \;{\Delta} crp$) cells to use maltose as a carbon source. The crp gene clone, pCKB12, was confirmed to stimulate the $\beta$-galactosidase activity, by Southern hybridization [31]. The nucleotide sequence of the crp region consisting of 1,979 bp was determined. The sequencing of the fragment led to the identification of two open reading frames: One of these, the crp gene, encoded 210 amino acid and the other encoded a truncated protein. The S. marcescens and E. coli crp genes showed a higher degree of divergence in their nucleotide sequence with 120 changes, however, the corresponding amino acid sequences showed only two amino acid differences. Yet, an analysis of the amino acid divergence revealed that the catabolite gene activator protein, the crp gene product, was the most conserved protein observed so far. Using a crp-lac protein fusion, it was demonstrated that S. marcescens CRP could repress its own expression, probably via a mechanism similar to that previously described for the E. coli crp gene.

  • PDF

Interaction between IGFBP-5 and TNFR1

  • Kim, Eun-Jung;Jeong, Mi-Suk;Hwang, Jae-Ryoung;Lee, Je-Ho;Jang, Se-Bok
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.7
    • /
    • pp.2019-2024
    • /
    • 2010
  • Insulin-like growth factor binding protein 5 (IGFBP-5) plays an important role in controlling cell survival, differentiation and apoptosis. Apoptosis can be induced by an extrinsic pathway involving the ligand-mediated activation of death receptors such as tumor necrosis factor receptor 1 (TNFR1). To determine whether IGFBP-5 and TNFR1 interact as members of the same apoptosis pathway, recombinant IGFBP-5 and TNFR1 were isolated. The expression and purification of the full-length TNFR1 and truncated IGFBP-5 proteins were successfully performed in E. coli. The binding of both IGFBP-5 and TNFR1 proteins was detected by surface plasmon resonance spectroscopy (BIAcore), fluorescence measurement, electron microscopy, and size-exclusion column (SEC) chromatography. IGFBP-5 indeed binds to TNFR1 with an apparent $K_D$ of 9 nM. After measuring the fluorescence emission spectra of purified IGFBP-5 and TNFR1, it was found that the tight interaction of these proteins is accompanied by significant conformational changes of one or both. These results indicate that IGFBP-5 acts potently as a novel ligand for TNFR1.

Ectopic Expression of Mitochondria Endonuclease Pnu1p from Schizosaccharomyces pombe Induces Cell Death of the Yeast

  • Oda, Kaoru;Kawasaki, Nami;Fukuyama, Masashi;Ikeda, Shogo
    • BMB Reports
    • /
    • v.40 no.6
    • /
    • pp.1095-1099
    • /
    • 2007
  • Endonuclease G (EndoG) is a mitochondrial non-specific nuclease that is highly conserved among the eukaryotes. Although the precise role of EndoG in mitochondria is not yet known, the enzyme is released from the mitochondria and digests nuclear DNA during apoptosis in mammalian cells. Schizosaccharomyces pombe has an EndoG homolog Pnu1p (previously named SpNuc1) that is produced as a precursor protein with a mitochondrial targeting sequence. During the sorting into mitochondria the signal sequence is cleaved to yield the functionally active endonuclease. From the analogy to EndoG, active extramitochondrial Pnu1p may trigger cell killing by degrading nuclear DNA. Here, we tested this possibility by expressing a truncated Pnu1p lacking the signal sequence in the extramitochondrial region of pnu1-deleted cells. The truncated Pnu1p was localized in the cytosol and nuclei of yeast cells. And ectopic expression of active Pnu1p led to cell death with fragmentation of nuclear DNA. This suggests that the Pnu1p is possibly involved in a certain type of yeast cell death via DNA fragmentation. Although expression of human Bak in S. pombe was lethal, Pnu1p nuclease is not necessary for hBak-induced cell death.