• 제목/요약/키워드: Truncated protein

검색결과 145건 처리시간 0.022초

Signal Transduction of C-Terminal Phosphorylation Regions for Equine Luteinizing Hormone/Chorionic Gonadotropin Receptor (eLH/CGR)

  • Byambaragchaa, Munkhzaya;Joo, Hyo-Eun;Kim, Sang-Gwon;Kim, Yean-Ji;Park, Gyeong-Eun;Min, Kwan-Sik
    • 한국발생생물학회지:발생과생식
    • /
    • 제26권1호
    • /
    • pp.1-12
    • /
    • 2022
  • This study aimed to investigate the signal transduction of phosphorylation sites at the carboxyl (C)-terminal region of equine luteinizing hormone/chorionic gonadotropin receptor (eLH/CGR). The eLH/CGR has a large extracellular domain of glycoprotein hormone receptors within the G protein-coupled receptors. We constructed a mutant (eLH/CGR-t656) of eLH/CGR, in which the C-terminal cytoplasmic tail was truncated at the Phe656 residue, through polymerase chain reaction. The eLH/CGR-t656 removed 14 potential phosphorylation sites in the intracellular C-terminal region. The plasmids were transfected into Chinese hamster ovary (CHO)-K1 and PathHunter Parental cells expressing β-arrestin, and agonist-induced cAMP responsiveness was analyzed. In CHO-K1 cells, those expressing eLH/CGR-t656 were lower than those expressing eLH/CGR wild-type (eLH/CGR-wt). The EC50 of the eLH/CGR-t656 mutant was approximately 72.2% of the expression observed in eLH/CGR-wt. The maximal response in eLH/CGR-t656 also decreased to approximately 43% of that observed in eLH/CGR-wt. However, in PathHunter Parental cells, cAMP activity and maximal response of the eLH/CGR-t656 mutant were approximately 173.5% and 100.8%, respectively, of that of eLH/CGR-wt. These results provide evidence that the signal transduction of C-terminal phosphorylation in eLH/CGR plays a pivotal role in CHO-K1 cells. The cAMP level was recovered in PathHunter Parental cells expressing β-arrestin. We suggest that the signal transduction of the C-terminal region phosphorylation sites is remarkably different depending on the cells expressing β-arrestin in CHO-K1 cells.

인체의 폐암과 정상 폐조직에서 Peroxiredoxin 및 Thioredoxin의 발현 양상 (Expression of Peroxiredoxin and Thioredoxin in Human Lung Cancer and Paired Normal Lung)

  • 김영선;박주헌;이혜림;심진영;최영인;오윤정;신승수;최영화;박광주;박래웅;황성철
    • Tuberculosis and Respiratory Diseases
    • /
    • 제59권2호
    • /
    • pp.142-150
    • /
    • 2005
  • 연구배경 : Peroxiredoxin (Prx) 은 최근에 알려진 항산화제로 세포의 증식과 분화, 세포사멸이나 발암과정에 관여하는 것으로 알려져 있다. 하지만, 현재까지 폐암을 비롯한 각종 질병에서의 이들 Prx단백의 역할은 잘 규명되어 있지 않다. 이에 본 연구는 폐암 조직과 정상폐조직에서 Prx 단백의 발현 양상과 분포를 연구하여 이들의 병태 생리학적인 의미를 찾아보고자 하였다. 방 법 : 아주대학교 병원에서 폐암으로 진단된 환자의 폐암조직과, 동일 환자의 정상 폐조직에서, 1 차원전기영동 (reducing 조건과 non-reducing 조건에서의 SDSPAGE) 혹은 2차원전기영동을 시행한 후 Western blot으로 Prx, Trx 및 TR의 발현 양상을 분석 하였으며, 백서의 정상 폐조직과, 환자의 폐암 조직에서 anti-Prx rabbit polyclonal 항체로 하여 면역조직화학염색법을 통해, Prx 단백의 분포를 관찰하였다. 결 과 : 면역조직화학염색법 결과 백서의 정상 폐조직에서는 Prx I, II, III 및 V 유형이, 주로 기관지상피세포, 폐포상피세포 및 폐포대식세포에서 발현되고 있음을 관찰하였다. 인체 폐암조직에서는, 정상 폐조직 부위에 비해서 Prx I 과 Prx III 유형 및 Trx단백의 발현이 선택적으로 증가되어 있고, 특히, 2차원 전기영동을 통한 프로티옴 분석에서 산화된 형태의 Prx I 과 Prx II가 증가 한 것을 비롯하여, 분자량과 등전점(pI)이 약간 변화된 형태의 Prx III가 폐암조직에 존재함을 알 수 있었다. 한편, 폐암 조직의 non-reducing 전기영동 후 Western blot에서는, monomer와 dimer 사이의 중간 크기에 해당하는 약 40 kDa과 200 kDa 이상 크기의, 항 Prx 항체와 반응하는 단백 띠 (reactive bands)가 관찰되었다. 결 론 : 폐암 조직에서 관찰되는 Prx I 과 Prx III 유형 및 Trx의 과발현 양상은, 종양 세포들이 주변의 미세 환경으로부터 겪는 여러 스트레스에 대하여 단백질을 보호하고 세포의 생명력을 유지하는데 있어 주요한 역할을 하는 것으로 사료된다.

Biological Functions of N- and O-linked Oligosaccharides of Equine Chorionic Gonadotropin and Lutropin/Chorionicgonadotropin Receptor

  • Min, K. S.
    • 한국동물번식학회:학술대회논문집
    • /
    • 한국동물번식학회 2000년도 국제심포지움
    • /
    • pp.10-12
    • /
    • 2000
  • Members of the glycoprotein family, which includes CG, LH, FSH and TSH, comprise two noncovalently linked $\alpha$- and $\beta$-subunits. Equine chorionic gonadotropin (eCG), known as PMSG, has a number of interesting and unique characteristics since it appears to be a single molecule that possesses both LH- and FSH-like activities in other species than the horse. This dual activity of eCG in heterologous species is of fundamental interest to the study of the structure-function relationships of gonadotropins and their receptors. CG and LH $\beta$ genes are different in primates. In horse, however, a single gene encodes both eCG and eLH $\beta$-subunits. The subunit mRNA levels seem to be independently regulated and their imbalance may account for differences in the quantities of $\alpha$ - and $\beta$ -subunits in the placenta and pituitary. The dual activities of eCG could be separated by removal of the N-linked oligosaccharide on the $\alpha$-subunit Asn 56 or CTP-associated O-linked oligosaccharides. The tethered-eCG was. efficiently secreted and showed similar LH-like activity to the dimeric eCG. Interestingly, the FSH-like activity of the tethered-eCG was increased markedly in comparison with the native and wild type eCG. These results also suggest that this molecular can implay particular models of FSH-like activity not LH-like activity in the eCG/indicate that the constructs of tethered molecule will be useful in the study of mutants that affect subunit association and/or secretion. A single-chain analog can also be constructed to include additional hormone-specific bioactive generating potentially efficacious compounds that have only FSH-like activity. The LH/CG receptor (LH/CGR), a membrane glycoprotein that is present on testicular Leydig cells and ovarian theca, granulosa, luteal, and interstitial cells, plays a pivotal role in the regulation of gonadal development and function in males as well as in nonpregnant and pregnant females. The LH/CGR is a member of the family of G protein-coupled receptors and its structure is predicted to consist of a large extracellular domain connected to a bundle of seven membrane-spanning a-helices. The LH/CGR phosphorylation can be induced with a phorbol ester, but not with a calcium ionophore. The truncated form of LHR also was down-regulated normally in response to hCG stimulation. In contrast, the cell lines expressing LHR-t63I or LHR-628, the two phosphorylation-negative receptor mutant, showed a delay in the early phase of hCG-induced desensitization, a complete loss of PMA-induced desensitization, and an increase in the rate of hCG-induced receptor down-regulation. These results clearly show that residues 632-653 in the C-terminal tail of the LHR are involved in PMA-induced desensitization, hCG-induced desensitization, and hCG-induced down-regulation. Recently, constitutively activating mutations of the receptor have been identified that are associated with familial male-precocious puberty. Cells expressing LHR-D556Y bind hCG with normal affinity, exhibit a 25-fold increase in basal cAMP and respond to hCG with a normal increase in cAMP accumulation. This mutation enhances the internalization of the free and agonist-occupied receptors ~2- and ~17-fold, respectively. We conclude that the state of activation of the LHR can modulate its basal and/or agonist-stimulated internalization. Since the internalization of hCG is involved in the termination of hCG actions, we suggest that the lack of responsiveness detected in cells expressing LHR-L435R is due to the fast rate of internalization of the bound hCG. This statement is supported by the finding that hCG responsiveness is restored when the cells are lysed and signal transduction is measured in a subcellular fraction (membranes) that cannot internalize the bound hormone.

  • PDF

Bacillus amyloliquefaciens에서 Puromycin 과 Magnesium에 의한 $\alpha$-Amylase 의 분비저해 (Disturbance of $\alpha$-Amylase Secretion from Bacillus amyloliquefaciens Cells by the Treatment of Puromycin and Magnesium)

  • 안순자;김순옥;이동희;송방호
    • 한국미생물·생명공학회지
    • /
    • 제17권5호
    • /
    • pp.412-420
    • /
    • 1989
  • Bacillus amyloliquefaciens의 extracellular $\alpha$-amylase는 세포질막에 결합된 ribosome에서 합성되며 이 때 ribosome은 nascent polypeptide쇄에 의해 막에 부착된 것으로 추측된다. $\alpha$-amylase 생산균주인 E. amyioiiquefaciens 야생주의 정상단백(MW, 58kDa)과 이 균주의 $\alpha$-amylase 구조유전자에 변이가 일어나 carboxy 말단이 결실된 변이주의 이상단백 (33kDa)은 동일조건하의 배양외액에서 그 효소활성이 검출됨을 볼 때, $\alpha$-amylase의 carboxy 말단에는 막 투과의 신호가 없는 것으로 생각된다. 그러나 이들 양균주의 대수증식기 세포에 puromycin을 20$\mu\textrm{g}$/$m\ell$까지 가하여 6시간 동안 처리한 결과 균의 사멸에는 영향을 미치지 않았으나 extracellular $\alpha$-amylase 활성은 10$\mu\textrm{g}$/$m\ell$의 농도에서도 동일양상으로 감소하였다. 이 감소요인은 puromycin 처리시 막결합 ribosome에서의 막과 ribosome의 가교로 작용할 것으로 예상되는 nascent poly peptide 합성이 중단되므로 막으로부터 ribosome이 해리되어 $\alpha$-amylase의 분비가 억제된 것으로 추측된다. 이 현상은 50mM의 magnesium의 첨가효과 가 약하게 나타났기 때문에 ribosome은 nascent Polypeptide의 가교로 막에 부착되어 있는 것으로 생각된다. 또 Iysozyme 처리에 의해 세포벽을 분해한 protoplas가 trypsin을 함께 처리하므로서 세포외액의 $\alpha$-amylase 활성이 상실됨은 막의 외부로 protruding되는 nascent polypeptide가 trypsin에 의해 분해되기 때문으로 생각된다. 3차 구조를 형성한 extracellular $\alpha$-amylase의 경우 trypsin 내성임을 감안할 때 이 분자가 세포막 통과 직후, 세포벽을 통과하기 이전에 folding이 이루어져서 그 후 성숙된 단백으로서 세포벽을 통과하는 것으로 믿어진다.

  • PDF

Biological Functions of N- and O-linked Oligosaccharides of Equine Chorionic Gonadotropin and Lutropin/Chorionic Gonadotropin Receptor

  • Min, K.S.
    • 한국가축번식학회지
    • /
    • 제24권4호
    • /
    • pp.357-364
    • /
    • 2000
  • Members of the glycoprotein family, which includes CG, LH, FSH and TSH, comprise two noncovalently linked $\alpha$- and $\beta$-subunits. Equine chorionic gonadotropin (eCG), known as PMSG, has a number of interesting and unique characteristics since it appears to be a single molecule that possesses both LH- and FSH-like activities in other species than the horse. This dual activity of eCG in heterologous species is of fundamental interest to the study of the structure-function relationships of gonadotropins and their receptors. CG and LH $\beta$ genes are different in primates. In horse, however, a single gene encodes both eCG and eLH $\beta$ -subunits. The subunit mRNA levels seem to be independently regulated and their imbalance may account for differences in the quantities of $\alpha$ - and $\beta$-subunits in the placenta and pituitary. The dual activities of eCG could be separated by removal of the N-linked oligosaccharide on the $\alpha$-subunit Asn 56 or CTP-associated O-linked oligosaccharides. The tethered-eCG was efficiently secreted and showed similar LH-like activity to the dimeric eCG. Interestingly, the FSH-like activity of the tethered-eCG was increased markedly in comparison with the native and wild type eCG. These results also suggest that this molecular can implay particular models of FSH-like activity not LH-like activity in the eCG/indicate that the constructs of tethered molecule will be useful in the study of mutants that affect subunit association and/or secretion. A single-chain analog can also be constructed to include additional hormone-specific bioactive generating potentially efficacious compounds that have only FSH-like activity. The LH/CG receptor (LH/CGR), a membrane glycoprotein that is present on testicular Leydig cells and ovarian theca, granulosa, luteal, and interstitial cells, plays a pivotal role in the regulation of gonadal development and function in males as well as in nonpregnant and pregnant females. The LH/CGR is a member of the family of G protein-coupled receptors and its structure is predicted to of a large extracellular domain connected to a bundle of seven membrane-spanning a-helices. The LH/CGR phosphorylation can be induced with a phorbol ester, but not with a calcium ionophore. The truncated form of LHR also was down-regulated normally in response to hCG stimulation. In contrast, the cell lines expressing LHR-t631 or LHR-628, the two phosphorylation-negative receptor mutant, showed a delay in the early phase of hCG-induced desensitization, a complete loss of PMA-induced desensitization, and an increase in the rate of hCG-induced receptor down-regulation. These results clearly show that residues 632~653 in the C-terminal tail of the LHR are involved in PMA-induced desensitization, hCG-induced desensitization, and hCG-induced down-regulation. Recently, constitutively activating mutations of the receptor have been identified that are associated with familial male-precocious puberty. Cells expressing LHR-D556Y bind hCG with normal affinity, exhibit a 25-fold increase in basal cAMP and respond to hCG with a normal increase in cAMP accumulation. This mutation enhances the internalization of the free and agoinst-occupied receptors ~2- and ~17- fold, respectively. We conclude that the state of activation of the LHR can modulate its basal and/or agonist-stimulated internalization. Since the internalization of hCG is involved in the termination of hCG actions, we suggest that the lack of responsiveness detected in cells expressing LHR-L435R is due to the fast rate of internalization of the bound hCG. This statement is supported by the finding that hCG responsiveness is restored when the cells are lysed and signal transduction is measured in a subcellular fraction (membranes) that cannot internalize the bound hormone.

  • PDF