• 제목/요약/키워드: True Stress

검색결과 232건 처리시간 0.026초

유한요소해석을 위한 재료의 진응력-진변형률 커브 피팅 방법론 (True Stress-True Strain Curve Fitting Methodology for Finite Element Analysis)

  • 김용주;구강희;서민홍;김형섭
    • 소성∙가공
    • /
    • 제31권4호
    • /
    • pp.194-199
    • /
    • 2022
  • In finite element method (FEM) simulations, constitutive models are widely used and developed to represent a wide range of true stress-strain curves using a small number of modeling parameters. Nevertheless, many studies has been conducted to find a suitable constitutive model and optimal modeling parameters to represent experimentally obtained true stress-strain curves. Therefore, in this study, a new constitutive modeling approach using the combined Swift and Voce model is suggested, and confirmed through comparisons of the experimental results with the FEM simulation results.

빙해선박용 강재의 저온특성에 관한 연구 (On the Mechanical Properties at Low Temperatures for Steels of Ice-Class Vessels)

  • 민덕기;심천식;신동완;조상래
    • 대한조선학회논문집
    • /
    • 제48권2호
    • /
    • pp.171-177
    • /
    • 2011
  • Tensile tests were conducted at low temperatures for the steel materials which are used for outer shell of the vessels making transit through the polar regions. The selected steel materials were GL-DH32, GL-DH36 and GL-EH36. In comparison with the results at room temperature, the yield stress increases approximately by 10 to 13 percent at $-30^{\circ}C$ and by 13 to 19 percent at $-50^{\circ}C$ while the tensile strength increases about by 9 percent at $-30^{\circ}C$ and 11 to 14 percent at $-50^{\circ}C$. To obtain true stress-true strain, i.e. correct plastic hardening characteristics, Bridgman's(1952) necking correction formula was introduced taking triaxial state of stresses after onset of diffuse necking into consideration. Photographs of fractured surfaces were taken by using Scanning Electron Microscope immedately after tensile tests completed and one for GL-EH36 has been presented in this paper.

인장시험의 실험과 해석 결과를 이용한 임계손상도의 결정 (Determination of a critical damage by experiment and analysis of tensile test)

  • 장성민;엄재근;이민철;전만수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.292-296
    • /
    • 2008
  • A new method of evaluating critical damage values of commercial materials is presented in this paper. The method is based on the previous study of the methodology [1] of acquisition of true stress-strain curves or flow stress curves over large strain from the tensile test in which the flow stress is described by the Hollomon law-like form, that is, by the strain dependent strength coefficient and the strain hardening exponent. The strain hardening exponent is calculated from the true strain at the necking point to meet the Considere condition. The strength coefficient is assumed to be constant before necking and represented by a piecewise linear function of strain after necking. With the predicted flow stress, a tensile test is simulated by a rigid-plastic finite element method with higher accuracy of less than 0.5% error between experiments and predictions. The instant when the fracture begins and thus the critical damage is obtained is determined by observing the stress variation at the necked region. It is assumed that the fracture due to damage begins when the pattern of stress around the necked region changes radically. The method is applied to evaluate the critical damage of a low carbon steel.

  • PDF

알루미늄-복합재료 혼성 사각관 보의 굽힘 성능평가 (Bending Performance Evaluation of Aluminum-Composite Hybrid Square Tube Beams)

  • 이성혁;최낙삼
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 춘계학술발표대회 논문집
    • /
    • pp.76-79
    • /
    • 2005
  • Bending deformation and energy absorption characteristics of aluminum-composite hybrid tube beams have been analyzed for improvement in the bending performance of aluminum space frame by using experimental tests combined with theoretical and finite element analyses. Hybrid tube beams composed of glass fabric/epoxy layer wrapped around on aluminum tube were made in autoclave with the recommended curing cycle. Basic properties of aluminum material used for initial input data of the finite element simulation and theoretical analysis were obtained from the true stress-true strain curve of specimen which had bean extracted from the Al tube beam. A modified theoretical model was developed to predict the resistance to the collapse of hybrid tube beams subjected to a bending load. Theoretical moment-rotation angle curves of hybrid tube beams were in good agreement with experimental ones, which was comparable to the results obtained from finite element simulation. Hybrid tube beams strengthened by composite layer on the whole web and flange showed an excellent bending strength and energy absorption capability.

  • PDF

EVALUATION OF DYNAMIC TENSILE CHARACTERISTICS OF POLYPROPYLENE WITH TEMPERATURE VARIATION

  • Kim, J.S.;Huh, H.;Lee, K.W.;Ha, D.Y.;Yeo, T.J.;Park, S.J.
    • International Journal of Automotive Technology
    • /
    • 제7권5호
    • /
    • pp.571-577
    • /
    • 2006
  • This paper deals with dynamic tensile characteristics for the polypropylene used in an IP(Instrument Panel). The polypropylene is adopted in the dash board of a car, especially PAB(Passenger Air Bag) module. Its dynamic tensile characteristics are important because the PAB module undergoes high speed deformation during the airbag expansion. Since the operating temperature of a car varies from $-40^{\circ}C$ to $90^{\circ}C$ according to the specification, the dynamic tensile tests are performed at a low temperature($-30^{\circ}C$), the room temperature($21^{\circ}C$) and a high temperature($85^{\circ}C$). The tensile tests are carried out at strain rates of six intervals ranged from 0.001/sec to 100/sec in order to obtain the strain rate sensitivity. The flow stress decreases at the high temperature while the strain rate sensitivity increases. Tensile tests of polymers are rather tricky since polymer does not elongate uniformly right after the onset of yielding unlike the conventional steel. A new method is suggested to obtain the stress-strain curve accurately. A true stress-strain curve was estimated from modification of the nominal stress-strain curves obtained from the experiment. The modification was carried out with the help of an optimization scheme accompanied with finite element analysis of the tensile test with a special specimen. The optimization method provided excellent true stress-strain curves by enforcing the load response coincident with the experimental result. The material properties obtained from this paper will be useful to simulate the airbag expansion at the normal and harsh operating conditions.

유압벌지실험을 이용한 순 티탄늄 판재의 소성유동곡선 평가(제2보) (Evaluation of plastic flow curve of pure titanium sheet using hydraulic bulge test)

  • 김영석;김진재
    • 한국산학기술학회논문지
    • /
    • 제17권4호
    • /
    • pp.718-725
    • /
    • 2016
  • 본 논문에서는 대형 선박의 판형 열교환기 등에 널리 이용되고 있는 순 티타늄 판재의 소성변형을 유한요소해석하기 위한 기초 데이터로서 순 티타늄 판재의 유동곡선을 평가하였다. 순 티타늄 판재의 프레스 가공 시에 판재에는 국부적으로 큰 소성변형이 발생하고 있다. 그러나 기존의 단축 인장실험에서 얻을 수 있는 소성변형률이 낮아서 티타늄 판재의 가공공정 설계를 위한 유한요소해석의 정밀도를 떨어뜨리는 경우가 있다. 본 연구에서는 큰 소성변형률 까지 안정적으로 성형이 가능한 유압벌지실험을 수행하여 재료의 소성변형에서 가공경화특성을 나타내는 유동곡선으로써 진응력-진변형률 선도를 구하였고 그 결과를 인장실험 결과와 비교하였다. 순 티타늄 판재의 유압벌지실험에서 재료의 변형률은 3D 디지털 영상상관법을 이용한 ARAMIS 시스템으로 실시간 측정된다. 이 유압벌지실험으로부터는 소성 변형률이 0.65 이상 까지도 안정적으로 재료의 소성유동곡선을 얻을 수 있었으며 그 결과는 Kim-Tuan 이 문헌 17[Y.S. Kim, J.H. In, Korean Acadmia-Ind. Coop. Soc.,(be in print), 2016] 의 연구에서 제안한 가공경화식으로 잘 핏팅됨을 알 수 있었다.

Experimental study on seepage characteristics of large size rock specimens under three-dimensional stress

  • Sun, Wenbin;Xue, Yanchao;Yin, Liming;Zhang, Junming
    • Geomechanics and Engineering
    • /
    • 제18권6호
    • /
    • pp.567-574
    • /
    • 2019
  • In order to study the effect of stress and water pressure on the permeability of fractured rock mass under three-dimensional stress conditions, a single fracture triaxial stress-seepage coupling model was established; By using the stress-seepage coupling true triaxial test system, large-scale rock specimens were taken as the research object to carry out the coupling test of stress and seepage, the fitting formula of permeability coefficient was obtained. The influence of three-dimensional stress and water pressure on the permeability coefficient of fractured rock mass was discussed. The results show that the three-dimensional stress and water pressure have a significant effect on the fracture permeability coefficient, showing a negative exponential relationship. Under certain water pressure conditions, the permeability coefficient decreases with the increase of the three-dimensional stress, and the normal principal stress plays a dominant role in the permeability. Under certain stress conditions, the permeability coefficient increases when the water pressure increases. Further analysis shows that when the gob floor rock mass is changed from high stress to unloading state, the seepage characteristics of the cracked channels will be evidently strengthened.

상온 및 고온 하 진삼축압축실험을 이용한 시추공의 파괴 거동 기초 연구 (A Basic Study on Borehole Breakout under Room Temperature and High Temperature True Triaxial Compression)

  • 윤정환;민기복;박의섭;정용복
    • 터널과지하공간
    • /
    • 제30권6호
    • /
    • pp.559-572
    • /
    • 2020
  • 본 연구에서는 현지 암반의 진삼축 응력 조건과 온도 변화를 고려한 공벽 안정성 실험을 수행하고, 심부 지하의 응력 조건과 압력 조건에서 암석의 열역학적 거동을 관찰하였다. 중국 황색 사암과 국내 황등 화강암 시료를 이용하여 진삼축압축실험을 진행하였다. 역학 실험은 각각 9가지 구속압 조건에서 수행되었고 열역학 실험은 화강암 시료를 이용하여 6가지 구속압 조건에서 시료를 60℃~100℃로 가열하여 수행하였다. 역학 실험 결과 공벽 파괴가 발생하는 최대 주응력은 중간 주응력에 비례하는 것을 확인하였다. 열역학 실험에서는 온도 증가에 따라 공벽의 응력장에 열응력이 추가되어 공벽 파괴가 추가적으로 발생하는 것을 확인하였다. 실내 실험 결과를 분석하기 위해 모기쿨롱 파괴 기준식을 사용하여 분석하였다. 원통형 시료에 대한 전통적인 삼축압축시험 결과와 진삼축 조건 하의 공벽 파괴 실험 결과가 모두 진삼축 파괴 기준식인 모기쿨롱 파괴 기준식에 잘 부합됨을 확인하였다.

Experimental study on propagation behavior of three-dimensional cracks influenced by intermediate principal stress

  • Sun, Xi Z.;Shen, B.;Zhang, Bao L.
    • Geomechanics and Engineering
    • /
    • 제14권2호
    • /
    • pp.195-202
    • /
    • 2018
  • Many laboratory experiments on crack propagation under uniaxial loading and biaxial loading have been conducted in the past using transparent materials such as resin, polymethyl methacrylate (PMMA), etc. However, propagation behaviors of three-dimensional (3D) cracks in rock or rock-like materials under tri-axial loading are often considerably different. In this study, a series of true tri-axial loading tests on the rock-like material with two semi-ellipse pre-existing cracks were performed in laboratory to investigate the acoustic emission (AE) characteristics and propagation characteristics of 3D crack groups influenced by intermediate principal stress. Compared with previous experiments under uniaxial loading and biaxial loading, the tests under true tri-axial loading showed that shear cracks, anti-wing cracks and secondary cracks were the main failure mechanisms, and the initiation and propagation of tensile cracks were limited. Shear cracks propagated in the direction parallel to pre-existing crack plane. With the increase of intermediate principal stress, the critical stress of crack initiation increased gradually, and secondary shear cracks may no longer coalesce in the rock bridge. Crack aperture decreased with the increase of intermediate principal stress, and the failure is dominated by shear fracturing. There are two stages of fracture development: stable propagation stage and unstable failure stage. The AE events occurred in a zone parallel to pre-existing crack plane, and the AE zone increased gradually with the increase of intermediate principal stress, eventually forming obvious shear rupture planes. This shows that shear cracks initiated and propagated in the pre-existing crack direction, forming a shear rupture plane inside the specimens. The paths of fracturing inside the specimens were observed using the Computerized Tomography (CT) scanning and reconstruction.