• Title/Summary/Keyword: Truck Weight

Search Result 130, Processing Time 0.023 seconds

THE NEW DEUTZ ENGINE FAMILY 2013 FOR COMMERCIAL VEHICLES

  • Mikulic, L.;Pleimling, H.;Pfeifer, A.;Lingens, A.
    • International Journal of Automotive Technology
    • /
    • v.2 no.4
    • /
    • pp.135-145
    • /
    • 2001
  • DEUTZ AG, co-founded in 1864 by Nicolaus August Otto, the inventor of the four-stroke cycle engine, has developed the new 2013 engine for commercial vehicles on the basis of the tried and tested 1012 and 1013 series. With 4 and 6 cylinder models, the engine covers the power range between 100 and 190 kW. At the time of their introduction to the market, the engines will meet the exhaust emission legislation of EURO IV and incorporate the potential for EURO IV, Further engineering targets were. (Compactness, Favourable power/cost relation, Low weight, Low fuel consumption and Low noise level). All targets could be accomplished in a relatively short development period via the application of modem simulation tools and test methods. In this paper, the design configuration of the engines is described with particular emphasis on measures for noise emission reduction and the combustion system including injection and turbo charging. Furthermore, we demonstrate the engine's potential to fullfill the European emission legislation EU4, which comes into force in 2005.

  • PDF

New Weight-reduction Design of the Fifth Wheel Coupler with a Trailer by Using Topology Optimization and Durability Tests (위상최적설계를 통한 트레일러 제5차륜 연결구조물의 경량화 및 내구성)

  • Kim, Cheol;Lee, Seung-Yoon;Lee, Yong-Choon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.2
    • /
    • pp.137-143
    • /
    • 2016
  • The fifth wheel coupler is a heavy automotive coupling structure which connects a tractor and a trailer used for heavy-duty trucks widely. It is subjected to various loads simultaneously such as rolling, pitching and yawing loads as well as coupling frictional and impact loadings. Most of existing couplers have been overdesigned and, therefore, it is necessary to reduce the dead weight to increase the fuel efficiency. The topology optimization was applied in order to find conceptual layout designs which could show major load paths and ribs locations, and then the size structural optimization was performed in order to determine the heights and thicknesses of coupler ribs with the predetermined various loading conditions for the development of a new slim coupler with a minimum weight and high enough strength and stiffness. As the results of the topology optimum design, an efficient new coupling structure for truck trailers was designed. The weight of the new fifth wheel coupler was reduced by 4.9 %, compared with the existing one, even though all strength requirements were satisfied. The fatigue test of the new coupler was performed with cyclic vertical loads (+78.4 to +235.2 kN) and horizontal loads (-91.2 to +91.2 kN) simultaneously at 1 Hz and the life of 2,000,000 cycles were achieved without failure.

A Study of Impact Factors and Barrier Height of Compact Car Road for Decision of Barrier Type (소형차도로 방호울타리 형식선정을 위한 충돌계수 및 방호울타리 높이선정 연구)

  • Choi, Hyun-Ho;Kim, Ki-Hwan;Lee, Eui-Joon;Yi, Sang-Keun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6D
    • /
    • pp.605-613
    • /
    • 2010
  • In this study, Impact factors are represented and barrier height of compact car road of safety barrier is suggested through the investigation of applying problems of existed standard of general car road. For this, traffic accidents analysis is performed and based on the analysis, impact vehicle weight, impact Angle, crash velocity, and barrier height are investigated. For the decision of impact angle, analysis is carried out by comparison of RISER and 2-lines expressway accidents data. Through this, higher-impact angle is suggested. Vehicle weight data of sub-compact car, small vehicle, medium and large vehicle, SUV, small truck is surveyed and analyzed. Based on the accident accumulation rate, regression analysis of vehicle weight impact and impact velocity is performed. Also, based on the cumulative rate of vehicle weight on expressways near Seoul, barrier height of compact car road is calculated. It is noted that the results of this study will be contributed to the decision of barrier type.

Study on the Dynamic Load Monitoring Using the Instrumented Vehicle (계측장치 실장 차량을 이용한 동적 하중 모니터링 연구)

  • Kim, Jong-Woo;Jung, Young-Woo;Kwon, Soon-Min
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.5
    • /
    • pp.95-107
    • /
    • 2016
  • The axle weight of a vehicle in motion can be measured with a low-speed or high-speed weigh-in-motion (WIM). However, the axial load dynamically change depending on the vehicle's characteristics-such as the chassis or axle structure-or the characteristics of the driving environment such as road flatness. The changes in dynamic load lead to differences between the vehicle's weight measured at rest and the vehicle's weight measured in motion. For this Study, an experiment was conducted with an instrumented vehicle to analyze the range of errors caused by uncontrollable environmental factors by identifying the characteristics of the dynamic load changes of a vehicle in motion, and determine the appropriate scale for the accuracy evaluation of a high-speed WIM, as a preparatory research for the introduction of unmanned overweight enforcement systems in the future. The key findings from the experiment are summarized as follows. First, The gross weight of the tested vehicle changed by approximately 1% at low velocities and approximately by 4% at high velocities, and the vehicle's axle weight changed by approximately 1-3%, at low velocities and by 2-9% at high velocities. A single axle showed larger weight changes than individual axles in a group. Secondly, The vehicle's gross weight and the axle weight on the impact section were up to eight times and three-to-twelve times higher, respectively, than its gross weight and the axle weight on the flat section. The vibration frequency of the vehicle's dynamic load was measured at between 2.4 and 5.8Hz, and found to return to the normal amplitude after moving approximately 30 meters.

Feasibility Study of High Strength Steel on Steel Bridge (고강도 강재의 강교량 적용성에 관한 연구)

  • Jeon, Jun Chang;Kim, Seok Tae;Kyung, Kab Soo;Lee, Hee Hyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.5 s.60
    • /
    • pp.603-612
    • /
    • 2002
  • Numerical analyses have been carried out in order to check the applicability of high-strength steel to a medium-sized steel bridge. Using the yield strength of steel, Average Daily Truck Traffic (ADTT), and fatigue grade of structural detail as analytical parameters, the minimum weight sections that satisfy the limit states of the AASHTO LRFD design specification were determined through an optimization scheme. Likewise, the effects of the number of girders and span length on the applicability of high-strength steel were evaluated. Results show that high-strength steel may be employed in the steel bridge, since steel weight decreases with increasing yield strength regardless of the fatigue effect. Nonetheless, appropriate countermeasures against fatigue should be determined since it is a major factor in the effective use of high-strength steel in steel bridges.

Light Weight Design of the Commercial Truck Armature Core using the Sequential Response Surface Method (순차적 반응표면법을 이용한 상용 트럭 아마추어 코어 경량화 설계)

  • H. T. Lee;H. G. Kim;S. J. Park;Y. G. Jung;S. M. Hong
    • Transactions of Materials Processing
    • /
    • v.32 no.1
    • /
    • pp.12-19
    • /
    • 2023
  • The armature core is a part responsible for the skeleton of the steering wheel. Currently, in the case of commercial trucks, the main parts of the parts are manufactured separately and then the product is produced through welding. In the case of this production method, quality and cost problems of the welded parts occur, and an integrated armature core made of magnesium alloy is used in passenger vehicles. However, in the case of commercial trucks, there is no application case and research is insufficient. Therefore, this study aims to develop an all-in-one armature core that simultaneously applies a magnesium alloy material and a die casting method to reduce the weight and improve the quality of the existing steel armature core. The product was modeled based on the shape of a commercial product, and finite element analysis (FEA) was performed through Ls-dyna, a general-purpose analysis program. Through digital image correlation (DIC) and uniaxial tensile test, the accurate physical properties of the material were obtained and applied to the analysis. A total of four types of compression were applied by changing the angle and ground contact area of the product according to the actual reliability test conditions. analysis was carried out. As a result of FEA, it was confirmed that damage occurred in the spoke area, and spoke thickness (tspoke), base thickness (tbase), and rim and spoke connection (R) were designated as design variables, and the total weight and maximum equivalent stress occurring in the armature core We specify an objective function that simultaneously minimizes . A prediction function was derived using the sequential response surface method to identify design variables that minimized the objective function, and it was confirmed that it was improved by 22%.

An Effectiveness Analysis of Pilot Enforcement for Overweight Vehicles(Trucks) using High-Speed Weigh-In-Motion System (고속 축중기를 이용한 고속도로 과적 시범단속 시행효과 분석)

  • Choi, Yoon-Hyuk;Kwon, Soon-Min;Park, Min-Seok
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.2
    • /
    • pp.63-73
    • /
    • 2016
  • On January 16 to May 31, 2012, Korea Expressway Corporation was carried out an pilot overweight enforcement using high-speed weigh-in-motion at Gyeongbu expressway 195.0k (Gimcheon) and Jungbunaeryuk expressway 119.5k (Seonsan). In this study, it is attempted to analyze the practical effect of high-speed weigh-in-motion by comparing the average total weight and traffic volume of eight weeks before and after the these overweight enforcement, respectively. The main results are as follows: First, the result of analysis of the change in average total weight and traffic volume, it was found that it did not differ after as in previous traffic volume, and the total weight is reduced. This means that the total weight is not reduced by decreasing freight traffic, but by decreasing the total weight. Therefore, it can be seen that there is an effect of pilot overweight enforcement using high-speed weigh-in-motion. Second, the average total weight and total weekly traffic volume decreased rapidly starting from the start of the overweight enforcement, but there was showing a tendency to increase gradually again.

A Fracture Study due to the Fork Width of Forklift (지게차 포크의 폭에 따른 파손 연구)

  • Han, Moonsik;Cho, Jaeung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.2
    • /
    • pp.124-129
    • /
    • 2018
  • A forklift is used to lift materials above a height of 2 m. The width of the fork determines the weight of the material it can carry. In this paper, three models of fractured forklifts were analyzed to determine if the fracture was caused by load fatigue due to the width of the fork. The position of the fork was fixed on each model, and a 2.5 ton load was placed at the upper part of the fork. The width distances on each of three models were 500 mm, 750 mm and 1000 mm, and the maximum equivalent stresses were 237.5MPa, 227.62MPa and 230.99MPa, respectively. This analysis demonstrated that as the load increased with use of the wider fork, the fatigue life remained to be nearly equivalent irrespective of fork width among all three models. The results of this study contribute to the durability and safety design of forklifts.

Measuring Particle Number from Light-duty Diesel Vehicles in WLTP Driving Cycle (WLTP 주행모드에서의 경유차 입자상물질 개수 배출 특성)

  • Park, Junhong;Lee, Jongtae;Kim, Jeongsoo;Kim, Sunmoon;Ahn, Keunhwan
    • Journal of ILASS-Korea
    • /
    • v.18 no.3
    • /
    • pp.155-160
    • /
    • 2013
  • Worldwide harmonized light-duty vehicle test procedure (WLTP) for emission certification has been developed in WP.29 forum in UN ECE since 2007. The test procedure is expected to be applied to Korean light-duty diesel vehicles at the same time of adoption in Europe. The air pollutant emissions from light-duty vehicles have been regulated with weight per distance travelled which means the driving cycles can affect the results. The six Euro-5 light-duty diesel vehicles including sedan, SUV and truck have been tested with WLTP, NEDC which is used for emission certification for light-duty diesel vehicles, and CVS-75 to estimate how much particle number emission can be affected by different driving cycles. The averaged particle number emissions have not shown statistically meaningful difference. The maximum particle number emission have been found in Low speed phase of WLTP which is mainly caused by cooled engine conditions. The amount of particle number emission in cooled engine condition is much different as test vehicles. It means different technical solution is required in this aspect to cope with WLTP driving cycle.

A Study on Real somatotype and Body consciousness of Middle-aged women (중년기 여성의 실제체형과 신체의식에 관한연구)

  • 손희순
    • Journal of the Korean Society of Costume
    • /
    • v.31
    • /
    • pp.119-130
    • /
    • 1997
  • The purpose of this study is to examine differences between real somatotypes and cog-nitive somatotypes by considering the degree of satisfaction of body parts. The subjects were 250 middle-aged women from 40-54. Data was collected through anthropometry and surveys. Data was analyzed by correlation analysis anova duncan multiple range test factor analysis regression analysis crosstabulation analysis. The results were as follows: 1. Middle-aged women tend to prefer having a slim truck long and slim limbs and their hope was to be tall in height and light in weight slim at the waist and abdomen. 2. The consciousness about thickness was in-tensified more than that about length of the body. 3. The slim somatotype group were more satisfied with their body than those of obese somatotype group. 4. The average R hrer Index of middle-aged women is 1.55 and the slim somatotype group is 1.33 and the standard somatotype group is 1.53 obese somatotype group is 1.82. Age has much influence on the body change of middle-aged women. Especially 45-49 years old the slim body type declined heavily. 5. When analyzing the elements of body sat-isfaction the biggest elements are in the sub-ject of girth related to the expansion of trunk. Therefore trunk girth has more influence on body satisfaction than height and limbs. So the obession of trunk girth is the most important factor in body satisfaction. 6. Most middle-aged women although not judged to be obese by measurements believed themselves to be obese.

  • PDF