• Title/Summary/Keyword: Tropospheric effect

Search Result 33, Processing Time 0.021 seconds

Fixed Point Algorithm for GPS Measurement Solution (GPS 관측치 위치계산을 위한 부동점 알고리즘)

  • Lim, Samsung
    • Journal of Advanced Navigation Technology
    • /
    • v.4 no.1
    • /
    • pp.45-49
    • /
    • 2000
  • A GPS measurement solution, in general, is obtained as a least squares solution since the measurement includes errors such as clock errors, ionospheric and tropospheric delays, multipath effect etc. Because of the nonlinearity of the measurement equation, we utilize the nonlinear Newton algorithm to obtain a least squares solution, or mostly, use its linearized algorithm which is more convenient and effective. In this study we developed a fixed point algorithm and proved its availability to replace the nonlinear Newton algorithm and the linearized algorithm. A nonlinear Newton algorithm and a linearized algorithm have the advantage of fast convergence, while their initial values have to be near the unknown solution. On the contrary, the fixed point algorithm provides more reliable but slower convergence even if the initial values are quite far from the solution. Therefore, two types of algorithms may be combined to achieve better performance.

  • PDF

Impacts of Ocean Currents on the South Indian Ocean Extratropical Storm Track through the Relative Wind Effect

  • Hyodae Seo;Hajoon Song;Larry W. O'Neill;Matthew R. Mazloff;Bruce D. Cornuelle
    • Journal of Climate Change Research
    • /
    • v.34 no.22
    • /
    • pp.9093-9113
    • /
    • 2021
  • This study examines the role of the relative wind (RW) effect (wind relative to ocean current) in the regional ocean circulation and extratropical storm track in the south Indian Ocean. Comparison of two high-resolution regional coupled model simulations with and without the RW effect reveals that the most conspicuous ocean circulation response is the significant weakening of the overly energetic anticyclonic standing eddy off Port Elizabeth, South Africa, a biased feature ascribed to upstream retroflection of the Agulhas Current (AC). This opens a pathway through which the AC transports the warm and salty water mass from the subtropics, yielding marked increases in sea surface temperature (SST), upward turbulent heat flux (THF), and meridional SST gradient in the Agulhas retroflection region. These thermodynamic and dynamic changes are accompanied by the robust strengthening of the local low-tropospheric baroclinicity and the baroclinic wave activity in the atmosphere. Examination of the composite life cycle of synoptic-scale storms subjected to the high-THF events indicates a robust strengthening of the extratropical storms far downstream. Energetics calculations for the atmosphere suggest that the baroclinic energy conversion from the basic flow is the chief source of increased eddy available potential energy, which is subsequently converted to eddy kinetic energy, providing for the growth of transient baroclinic waves. Overall, the results suggest that the mechanical and thermal air-sea interactions are inherently and inextricably linked together to substantially influence the extratropical storm tracks in the south Indian Ocean.

Effect of UV Radiation on Early Growth of Korean Rice Cultivars(Oryza sativa L.)

  • Choi, Kwan-Sam;In, Jun-Gyo;Kang, Si-Yong;Bae, Chang-Hyu;Lee, Hyo-Yeon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.3
    • /
    • pp.296-301
    • /
    • 1999
  • The concerns on the crop damage by ultraviolet (UV) radiations is increasing owing to the decrease of their absorbing stratospheric ozone in the tropospheric. Cultivar differences on early growth of UV radiation among five Korean rice cultivars, four japonica types and one Tongil type (indica-japonica cross hybrid), were studied. Pot-seeded rice plants were grown under four different radiation conditions, i.e., visible radiation only, visible radiation with supplemented with high or low dose of UV-B (280~320 nm in wavelength) and UV-C (less than 280 nm in wavelength). The inhibitory degree on plant height, shoot and root weight and length of leaf blade and leaf sheath were determined at 40 days after seeding. UV-C showed the most severe inhibitory effect on the degree of biomass gain and leaf growth in most cultivars examined, followed by high UV-B and low UV-B. Among the cultivars used, the Kuemobyeo was the most sensitive cultivar and had not repair or showed resistance ability to continued irradiation of UV radiation. However, Janganbyeo and Jaekeon showed different responses that the elongation of leaf blades was promoted on 2nd and 3rd leaves and inhibited on 4th and 5th leaves but this inhibitory degree was reduced on 6 th and 7th leaves. Such tendency on leaf growth means that both cultivars had low sensitivity and most resistant ability to continued irradiation of UV radiation. While Tongil showed different response to enhanced UV radiation, ie., low UV-B promoted leaf growth but the inhibitory was severely increased by continued irradiation of high UV-B and UV-C, which means that Tongil had high threshold of UV radiation for response as an inhibitory light of plant growth. The results of this study indicate that the differences on sensitivity or resistant to the effects of UV radiation were existed among Korean rice cultivars.

  • PDF

Growth and Photosynthetic Responses of Cuttings of a Hybrid Larch (Larix gmelinii var. japonica x L. kaempferi) to Elevated Ozone and/or Carbon Dioxide

  • Koike, Takayoshi;Mao, Qiaozhi;Inada, Naoki;Kawaguchi, Korin;Hoshika, Yasutomo;Kita, Kazuhito;Watanabe, Makoto
    • Asian Journal of Atmospheric Environment
    • /
    • v.6 no.2
    • /
    • pp.104-110
    • /
    • 2012
  • We studied the effects of elevated ozone ([$O_3$]) and $CO_2$ concentrations ([$CO_2$]) on the growth and photosynthesis of the hybrid larch $F_1(F_1)$ and on its parents (the Dahurian larch and Japanese larch). $F_1$ is a promising species for timber production in northeast Asia. Seedlings of the three species were grown in 16 open top chambers and were exposed to two levels of $O_3$ (<10 ppb and 60 ppb for 7 h per day) in combination with two levels of $CO_2$ (ambient and 600 ppm for daytime) over an entire growing season. Ozone reduced the growth as measured by height and diameter, and reduced the needle dry mass and net photosynthetic rate of $F_1$, but had almost no effect on the Dahurian larch or Japanese larch. There was a significant increase in whole-plant dry mass induced by elevated [$CO_2$] in $F_1$ but not in the other two species. Photosynthetic acclimation to elevated [$CO_2$] was observed in all species. The net photosynthetic rate measured at the growing [$CO_2$] (i.e. 380 ppm for ambient treatment and 600 ppm for elevated $CO_2$ treatment) was nevertheless greater in the seedlings of all species grown at elevated [$CO_2$]. The high [$CO_2$] partly compensated for the reduction of stem diameter growth of $F_1$ at high [$O_3$]; no similar trend was found in the other growth and photosynthetic parameters, or in the other species.

Analyses of the OMI Cloud Retrieval Data and Evaluation of Its Impact on Ozone Retrieval (OMI 구름 측정 자료들의 비교 분석과 그에 따른 오존 측정에 미치는 영향 평가)

  • Choi, Suhwan;Bak, Juseon;Kim, JaeHwan;Baek, KangHyun
    • Atmosphere
    • /
    • v.25 no.1
    • /
    • pp.117-127
    • /
    • 2015
  • The presences of clouds significantly influence the accuracy of ozone retrievals from satellite measurements. This study focuses on the influence of clouds on Ozone Monitoring instrument (OMI) ozone profile retrieval based on an optimal estimation. There are two operational OMI cloud products; OMCLDO2, based on absorption in $O_2-O_2$ at 477 nm, and OMCLDRR, based on filling in Fraunhofer lines by rotational Raman scattering (RRS) at 350 nm. Firstly, we characterize differences between $O_2-O_2$ and RRS effective cloud pressures using MODIS cloud optical thickness (COT), and then compare ozone profile retrievals with different cloud input data. $O_2-O_2$ cloud pressures are significantly smaller than RRS by ~200 hPa in thin clouds, which corresponds to either low COT or cloud fraction (CF). On the other hand, the effect of Optical centroid pressure (OCP) on ozone retrievals becomes significant at high CF. Tropospheric ozone retrievals could differ by up to ${\pm}10$ DU with the different cloud inputs. The layer column ozone below 300 hPa shows the cloud-induced ozone retrieval error of more than 20%. Finally, OMI total ozone is validated with respect to Brewer ground-based total ozone. A better agreement is observed when $O_2-O_2$ cloud data are used in OMI ozone profile retrieval algorithm. This is distinctly observed at low OCP and high CF.

Changes in the Characteristics of Wintertime Climatology Simulation for METRI AGCM Using the Improved Radiation Parameterization (METRI AGCM의 복사 모수화 개선에 따른 겨울철 기후모의의 특징적 변화)

  • Lim, Han-Cheol;Byun, Young-Hwa;Park, Suhee;Kwon, Won-Tae
    • Atmosphere
    • /
    • v.19 no.2
    • /
    • pp.127-143
    • /
    • 2009
  • This study investigates characteristics of wintertime simulation conducted by METRI AGCM utilizing new radiation parameterization scheme. New radiation scheme is based on the method of Chou et al., and is utilized in the METRI AGCM recently. In order to analyze characteristics of seasonal simulation in boreal winter, hindcast dataset from 1979 to 2005 is produced in two experiments - control run (CTRL) and new model's run (RADI). Also, changes in performance skill and predictability due to implementation of new radiation scheme are examined. In the wintertime simulation, the RADI experiment tends to reduce warm bias in the upper troposphere probably due to intensification of longwave radiative cooling over the whole troposphere. The radiative cooling effect is related to weakening of longitudinal temperature gradient, leading to weaker tropospheric jet in the upper troposphere. In addition, changes in vertical thermodynamic structure have an influence on reduction of tropical precipitation. Moreover, the RADI case is less sensitive to variation of tropical sea surface temperature than the CTRL case, even though the RADI case simulates the mean climate pattern well. It implies that the RADI run does not have significant improvement in seasonal prediction point of view.

Assessment of Positioning Accuracy based on Medium- and Long-range GPS L1 Relative Positioning using Regional Ionospheric Grid Model (중·장기선 GPS L1 상대측위에서 격자형 지역 전리층 모델 적용에 따른 측위 정확도 영향 평가)

  • Son, Eun-Seong;Won, Jihye;Park, Kwan-Dong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.5
    • /
    • pp.459-466
    • /
    • 2012
  • The ionospheric delay is the largest error source in GPS positioning after the SA effect has been turned off. The ionospheric error can be easily removed by using ionospheric-free combinations but it is only restricted for dual-frequency receivers. Therefore, in this study, the regional ionospheric grid model was developed for single-frequency receivers. The developed model was compared with GIM to validate its accuracy. As a result, it yielded RMSE of 3.8 TECU for 10 days. And L1 medium- and long-range relative positioning was performed to evaluate positioning accuracy improvements. The positioning accuracy was improved by 46.7% compared with that without any correction of ionosphere and troposphere and was improved by 14.5% compared with that only tropospheric correction.

Development and Positioning Accuracy Assessment of Precise Point Positioning Algorithms based on GPS Code-Pseudorange Measurements (GPS 코드의사거리 기반 정밀단독측위(PPP) 알고리즘 개발 및 측위 정확도 평가)

  • Park, Kwan Dong;Kim, Ji Hye;Won, Ji Hye;Kim, Du Sik
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.1
    • /
    • pp.47-54
    • /
    • 2014
  • Precise Point Positioning (PPP) algorithms using GPS code pseudo-range measurements were developed and their accuracy was validated for the purpose of implementing them on a portable device. The group delay, relativistic effect, and satellite-antenna phase center offset models were applied as fundamental corrections for PPP. GPS satellite orbit and clock offsets were taken from the International GNSS Service official products which were interpolated using the best available algorithms. Tropospheric and ionospheric delays were obtained by applying mapping functions to the outputs from scientific GPS data processing software and Global Ionosphere Maps, respectively. When the developed algorithms were tested for four days of data, the horizontal and vertical positioning accuracies were 0.8-1.6 and 1.6-2.2 meters, respectively. This level of performance is comparable to that of Differential GPS, and further improvements and fine-tuning of this suite of PPP algorithms and its implementation at a portable device should be utilized in a variety of surveying and Location-Based Service applications.

Tropospheric Ozone over the Seoul Metropolitan Area Derived from Satellite Observations (MODIS) and Numerical Simulation (위성관측(MODIS)에서 유도된 수도권 지역의 대류권 오존 및 수치실험)

  • Yoo Jung-Moon;Park Yoo-Min;Lee Suk-Jo
    • Journal of the Korean earth science society
    • /
    • v.26 no.3
    • /
    • pp.283-296
    • /
    • 2005
  • The effect of ozone and surface temperature on the ozone band at $9.7{\mu}m$ has been investigated from radiative transfer theory together with observations in order to derive empirical methods for remotely sensing ground-ozone concentration. Simultaneous observations of satellite (MODIS Aqua; ECT 13:30) and ground-ozone at 79 stations have been used over the Seoul Metropolitan Area (SMA; 125.7-127.2 E, 37.2-37.7 N) during four ozone-warning days in the year 2003. Cloud effect on the band in the methods was filtered out based on synoptic observations. Upwelling radiance values at $9.6{\mu}m$ which have been estimated at the given ozone concentration of 327-391 DU depend on surface temperature (Ts) showing $5.52\~5.78Wm^{-2}sr^{-1}\;at\;Ts = 290 K,\;and\;9.00\~9.57Wm^{-2}sr^{-1}$ Ts = 325K. Thus, the partitioned contributions of ozone and temperature to intensity of ozone absorption band are $0.26Wm^{-1}sr^{-1}/64\;DU\;and\;0.31 Wm^{-2}sr^{-1}/35K$, respectively. Here the intensity which has been used to remotely detect ground-ozone concentration from infrared satellite measurement is defined as the difference in brightness temperature between $11{\mu} m\;and\;9.7{\mu}m (i.e.,\; T_{11-9.7})$. The methods in this study have been applied to estimate ground-ozone from MODIS data in cases that there are significant correlations between the band intensity and ground-ozone. The values of estimated ozone significantly correlate (0.49-0.63) with ground observations at a significance level of $1\%$. For the improved methods, further study may be required to use tropospheric ozone rather than ground-ozone, considering the variation stratospheric ozone.

Impact of East Asian Summer Atmospheric Warming on PM2.5 Aerosols (동아시아 지역의 여름철 온난화가 PM2.5 에어로졸에 미치는 영향)

  • So-Jeong Kim;Jae-Hee Cho;Hak-Sung Kim
    • Journal of the Korean earth science society
    • /
    • v.45 no.1
    • /
    • pp.1-18
    • /
    • 2024
  • This study analyzed the effect of warming on PM2.5 aerosol production in mid-latitude East Asia during June 2020 using PM2.5 aerosol anomalies, which were identified by incorporating meteorological and climate data into the Weather Research Forecasting model coupled with Chemistry (WRF-Chem) model. The decadal temperature change trend over a 30-year period (1991-2020) in East Asia showed that recent warming has been greater in summer than in winter. Summer warming in East Asia generated low and high pressure in the lower and upper troposphere, respectively, over China. The boundary between the lower tropospheric low and upper tropospheric high pressure sloped along the terrain from the Tibetan Plateau to Korea. The eastern China, Yellow Sea, and Korean regions experienced a convergence of warm and humid southwesterly airflows originating from the East China Sea with the development of a northwesterly Pacific high pressure. In June 2020, the highest temperatures were observed since 1973 in Korea. Meanwhile, enhanced warming in East Asia increased the production of PM2.5 aerosols that travelled long distances from eastern China to Korea. PM2.5 anomalies, which were derived solely by inputting meteorological and climatic data (1991-2020) into the WRF-Chem model and excluding emission variations, showed a positive distribution extending from eastern China to South Korea across the Yellow Sea as well as over the Pacific Northwest. Thus, the contribution of warming to PM2.5 aerosols in East Asia during June 2020 was more than 50%. In particular, PM2.5 aerosols were transported from eastern China to Korea through the Yellow Sea, where the warm and humid southwesterly airflows implied wet scavenging of sulfate but promoted nitrate production.