DOI QR코드

DOI QR Code

중·장기선 GPS L1 상대측위에서 격자형 지역 전리층 모델 적용에 따른 측위 정확도 영향 평가

Assessment of Positioning Accuracy based on Medium- and Long-range GPS L1 Relative Positioning using Regional Ionospheric Grid Model

  • 손은성 (인하대학교 사회기반시스템공학부 지리정보공학과) ;
  • 원지혜 (인하대학교 사회기반시스템공학부 지리정보공학과) ;
  • 박관동 (인하대학교 사회기반시스템공학부 지리정보공학과)
  • 투고 : 2012.08.27
  • 심사 : 2012.10.31
  • 발행 : 2012.10.31

초록

전리층에 의한 신호지연은 SA 해제이후 GPS 측위에 가장 큰 오차 요인이다. 전리층 오차는 이중주파수 수신기를 이용할 경우 무전리층 조합으로 쉽게 제거할 수 있지만 단일주파수 수신기는 무전리층 조합을 수행할 수 없기 때문에 전리층 오차를 쉽게 제거할 수 없다는 단점이 존재한다. 따라서 이 연구에서는 단일주파수 사용자를 위한 격자형 지역 전리층 모델을 개발하였다. 개발된 지역 전리층 모델을 평가하기 위해 IGS의 전지구 모델과 비교하였으며 그 결과 열흘 평균 3.8 TECU의 RMSE를 나타내었다. 그리고 측위 정확도에 미치는 영향을 평가하기 위해 생성된 지역 전리층 모델을 적용하여 L1 관측치만을 이용한 중 장기선 상대측위를 수행하였다. 전리층과 대류권 오차를 보정한 결과 두 오차를 보정하기 전의 측위 결과와 비교하여 평균 46.7%의 측위 정확도가 향상되었으며 대류권 오차만 보정한 측위 결과와 비교하여 전리층 오차 보정 후에는 평균 14.5%의 측위 정확도가 향상되었다.

The ionospheric delay is the largest error source in GPS positioning after the SA effect has been turned off. The ionospheric error can be easily removed by using ionospheric-free combinations but it is only restricted for dual-frequency receivers. Therefore, in this study, the regional ionospheric grid model was developed for single-frequency receivers. The developed model was compared with GIM to validate its accuracy. As a result, it yielded RMSE of 3.8 TECU for 10 days. And L1 medium- and long-range relative positioning was performed to evaluate positioning accuracy improvements. The positioning accuracy was improved by 46.7% compared with that without any correction of ionosphere and troposphere and was improved by 14.5% compared with that only tropospheric correction.

키워드

참고문헌

  1. 김두식 (2011), AWS 기상자료 보간을 통한 GPS 가강 수량 산출 및 정확도 검증, 석사학위논문, 인하대학교.
  2. 김경희, 박관동 (2009), 국토해양부 GPS 상시관측소를 활용한 한반도 전리층의 총전자수 추정, 한국지형공간정보학회지, 한국지형공간정보학회, 제17권, 제1호, pp. 149-155.
  3. 이민석 (2006), 무선인터넷과 RF모델을 혼합한 RTKGPS측량 정확도 개선, 박사학위논문, 인하대학교.
  4. 이창문, 김지혜, 박관동 (2011), Differential Code Bias를 고려한 한반도 전리층 총전자수 지도 생성, 한국측량학회지, 한국측량학회, 제 29권, 제 3호, pp. 293-301.
  5. 이창문 (2011), 반송파 위상 기반 전리층 총전자수 추정, 석사학위논문, 인하대학교.
  6. 최병규 (2009), 중거리 기선 측지 성능 개선을 위한 지역 전리층 모델 개발, 박사학위논문, 충남대학교.
  7. 최병규, 조성기, 이상정 (2009), 전리층 TEC를 이용한 GPS 수신기와의 위성의 DCB 추정, 한국우주과학회지, 한국우주과학회, 제 26권, 제 2호, pp. 221-228.
  8. 황유라, 박관동, 박필호, 임형철, 조정호 (2003), 지역적인 GPS 관측 데이터를 이용한 이온층 모델링 및 추정, 대한원격탐사학회지, 제 19권 제 4호, pp. 227-284.
  9. Blewitt G. (1990), An automatic editing algorithm for GPS data, Geophysical Research Letters, Vol. 17, No. 3, pp. 199-202. https://doi.org/10.1029/GL017i003p00199
  10. Eueler H. and Goad C. C. (1991), On optimal filtering of GPS dual-frequency observations without using orbit information, Bulletin Geodesique, Vol. 65, No. 2, pp. 130-143. https://doi.org/10.1007/BF00806368
  11. Goad C. C. (1990), Optimal filtering of pseudoranges and phases from single-frequency GPS receivers, NAVIGATION: Journal of the Institute of Navigation, Vol. 37, No. 4, Fall.
  12. Hofmann-Wellenhof B., Lichtenegger H., and Wasle E. (2008), GNSS:Global navigation satellite systems:GPS, GLONASS, Galileo & More, Springer/WienNewYork.
  13. IGS 홈페이지 : http://igscb.jpl.nasa.gov/components/prods.html
  14. Junkins J. L., Miller G. W., and Jancaitis J. R. (1973), A weighting function approach to modelling of irregular surfaces, Journal of Geophysical Research Vol. 78, No. 11, pp. 1794-1803. https://doi.org/10.1029/JB078i011p01794
  15. Komjathy A. (1997), Global ionospheric total electron content mapping using the global positioning system, Ph.D. dissertation, Department of Geodesy and Geomatics Engineering, University of New Brunswick, New Brunswick, Canada.
  16. Kouba J. (2009), A guide to using International GNSS Service(IGS) products, Natural Resources Canada.
  17. Liao X. (2000), Carrier phase based ionosphere recovery over a regional area GPS network, UCGE Reports, Number 20143, The university of Calgary, Calcary, Alberta, Canada.
  18. Ma G. and Maruyama T. (2003), Derivation of TEC and estimation of instrumental biases from GEONET in Japan, Annales Geophysicae, Vol. 21, pp. 2083-2093. https://doi.org/10.5194/angeo-21-2083-2003
  19. Mannucci A. J., Wilson B. and Edwards C. (1993), A new method for monitoring the Earth's ionospheric total electron content using the GPS global network, Proceedings of the ION GPS-93, Salt Lake City, Utah, pp. 1323-1332.
  20. Mannucci A. J., Wilson B. D., Yuan D. N., Ho C. H., Lindqwister U. J. and Runge T. F. (1998), A global mapping technique for GPS-derived ionospheric total electron content measurements, Radio Science, Vol. 33, No. 3., pp. 565-582. https://doi.org/10.1029/97RS02707
  21. Schaer, S., (1999), Mapping and Predicting the Earth's Ionosphere Using the Global Positioning System, Ph. D dissertation, Astronomical Institute, University of Bern, Switzerland.
  22. Skone S. (1998), Wide area ionosphere grid modelling in the auroral region, Ph.D. dissertation, Department of Geomatics Engineering, University of Calgary, Calgary, Alberta, Canada.
  23. Teunissen P. (1993), The lesat squares ambiguity decorrelation adjustment:a method for fast GPS integer ambiguity estimation, Journal of Geodesy, Vol. 70, No. 1-2, pp. 65-82.
  24. Xu G. (2007), GPS:theory, algorithms and applications, Springer.