• Title/Summary/Keyword: Tropical night days

Search Result 12, Processing Time 0.038 seconds

Study of Summer Season High Temperature Events in Busan (부산지역의 하계 도시열환경의 특성에 관한 연구)

  • Lee, Kwi-Ok;Lee, Hyun-Ju;Lee, Hwa-Woon
    • Journal of Environmental Science International
    • /
    • v.16 no.5
    • /
    • pp.593-602
    • /
    • 2007
  • The frequency of tropical nights and tropical days in Busan during summer season (June-August) from 1995 to 2004 were investigated. When air temperature higher than $25^{\circ}C$ continuously maintains at night in summer, it is called the occurrence of tropical night. Tropical day is defined that maximum air temperature is higher than $30^{\circ}C$, In Jin-Gu and Daeyeon-dong shows a lot of frequency of tropical day and tropical night because there were located in downtown. Relatively, the areas where are located in seaside and riverside show very low frequency. This can be explained the cooling effects of sea and river. The main meteorological characteristics during tropical nights and tropical days is proved pattern of reverse tendency through wind rose. We analyzed heat index and discomfort index during tropical night and tropical day. This study is useful to understand the aspect of urban thermal environment but need some more observation to quantify.

A Study on the Thermal Characteristics of Midsummer in Daegu Metropolitan Area

  • Park, Myung-Hee;Lee, Joon-Soo;Ahn, Won-Shik;Kim, Hae-Dong;Oh, Sung-Nam
    • Journal of Environmental Science International
    • /
    • v.22 no.6
    • /
    • pp.667-677
    • /
    • 2013
  • This study aims to examine the actual status of the urban heat island in Daegu by analyzing the data of 17 automatic weather stations installed in the Daegu area. And the results can be summarized as follows: First, regarding the temperature distribution in Daegu by summer time zones, for the 31 days(August 1st till 31st), 18 days showed daily maximum temperature over $30^{\circ}C$, and 11 days indicated daily minimum temperature over $25^{\circ}C$. The day that showed the highest daily maximum temperature was August 5th, which indicated $36^{\circ}C$. Second, about the spatial distribution of time ratio exceeding $30^{\circ}C$ and $25^{\circ}C$, the area with the highest time ratio exceeding $30^{\circ}C$ is mostly the downtown(central area), eastern area, and northern area. Meanwhile, regarding the time ratio exceeding $25^{\circ}C$, the downtown area centering around the central area were high as over 70%, and the outskirts were low as under 65%. Third, considering the temporal distribution of daily maximum temperature and daily minimum temperature, daily maximum temperature was shown around 14:00 to 15:00 while the daily minimum temperature was indicated around 17:00 to 18:00. Daily maximum and minimum temperature were appeared at northeast and downtown, respectively. Fourth, regarding the spatial distribution of tropical days and tropical night days, tropical days showed 77% and tropical night days indicated 42% before and after the 24th and also the 13th each. Tropical days were occurred up to 24 days at northeastern area. And the southwestern area of Daegu showed under 22 days. The downtown showed the 14 days of the tropical night. However, the outskirts indicated relatively few days as under 10 days. Fifth, about the spatial distribution of the average daily temperature range (the difference between the highest temperature and lowest temperature), the central area, the central part of the city, showed the smallest as $7.2^{\circ}C$, and as it was closer to the northern area, it became larger, so in the eastern and northern area, it was over $8.8^{\circ}C$ or so.

The Occurrence Characteristic and Future Prospect of Extreme Heat and Tropical Night in Daegu and Jeju (대구와 제주의 폭염 및 열대야의 발생 특성)

  • Kim, Jin-Ah;Kim, Kyu-Rang;Kim, Baek-Jo
    • Journal of Environmental Science International
    • /
    • v.24 no.11
    • /
    • pp.1493-1500
    • /
    • 2015
  • Observation data (1981-2014) and climate change scenario data (historical: 1981-2005; RCP 2.6 and 8.5: 2006-2100) were used to analyze occurrence and future outlook of the extreme heat days and tropical nights in Daegu and Jeju. Then we compared the mortality and observations data (1993-2013). During 1981-2014, the average of extreme heat days (tropical nights) was 24.41 days (12.47 days) in Daegu, and 6.5 days (22.14 days) in Jeju. Extreme heat days and tropical nights have been similarly increased in Daegu, but tropical nights increased more than extreme heat days in Jeju. Extreme heat days and tropical nights in both, Daegu and Jeju showed high correlation with daily mortality, specifically Daegu's correlation was higher than that of jeju. The yearly increasing rate of extreme heat of the future (2076-2100) was 1.7-3.6 times and 7.8-37.7 times higher than the past (1981-2005) in Daegu and Jeju, respectively. The yearly increase rate of tropical nights of future was 2.6-5.0 times and 2.9-5.6 times higher in Daegu and Jeju, respectively. During 2006-2100 periods, the trend of extreme heat days was observed both in Daegu and Jeju. On the average, extreme heat days and tropical nights in Jeju increased more than that of Daegu. However, the trend of extreme heat days increase in Daegu was higher than that in Jeju, whereas, the trend of tropical nights in Jeju was higher than that in Daegu.

Study on the Long-term Change of Urban Climate in Daegu (대구의 장기적 도시기후 변동에 관한 연구)

  • 김해동
    • Journal of Environmental Science International
    • /
    • v.12 no.7
    • /
    • pp.697-704
    • /
    • 2003
  • Through data analysis using the meteorological data during 40 years(1961∼2000) for 2 stations(Daegu and Chupungnyong), we studied the present condition and long-term trends in urban climatic environments of Daegu. It was found that there was about 1.5$^{\circ}C$ rise in annual mean temperature of Daegu from 1961 to 2000. On the other hand, that of Chupungnyung was not more than 0.4$^{\circ}C$ for the same period. The regional disparity in temperature changes has been caused by the difference of urban effects on climate between two regions. In particular, the urban warming appears more significant in winter season. There was about 3$^{\circ}C$ rise in annual mean daily minimum temperature of winter season(Dec.∼Feb.) in Daegu. As the result, the number of winter days continuously decreased from 115 days(1961) to 75 days(2000). The long-term trends of relative humidity were also studied to exame the effects of urbanization on climate in Daegu. It was found that there was about 7% decrease in relative humidity of Daegu during past 40 years(1961∼2000). On the other side, the decrease of Chupungnyung was not more than 2% for the same period. The long-term trends of the other climatic factors(fog days, tropical night days, etc) were also studied in this study.

Observational Study of Thermal Characteristics by Distribution Ratio of Green Area at Urban in Summer Season (하절기 관측을 통한 도시의 지역별 공간녹지분포율에 따른 열환경 특성 연구)

  • Jung, Im-Soo;Choi, Dong-Ho;Lee, Bu-Yong
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.3
    • /
    • pp.8-16
    • /
    • 2011
  • The objective of this study is to analyze the characteristic of thermal environment in the summer season by conducting the field observation of temperature, relative humidity, and globe temperature in some parts of the city. Observation point was divided to a densely populated area, a residential area, a green area, a waterfront green area and a suburban district by the distribution ratio of green area. In this study, the correlation between maximum temperature and globe temperature, study on index for intensity of the tropical night and the temperature distribution characteristic of measurement points by the distribution ratio of green area were analyzed. The results of this study are as follows. (1) The difference between temperature and globe temperature by the distribution ratio of green area is confirmed. The difference of nighttime is more clearly that of daytime. (2) The average temperature and globe temperature of the densely populated area($29.2^{\circ}C$, $33.7^{\circ}C$) are higher than that of the waterfront green area($27.9^{\circ}C$, $32.0^{\circ}C$) by $1.3^{\circ}C$ and $1.7^{\circ}C$, respectively. (3) The number of tropical nights has different days of tropical nights by the distribution ratio of green area of 17days for the Daegu weather station, 14days for adensely populated area, 14days for a residential area, 6days for a green area, 2days for a waterfront green area, and 2days for a suburban district. (4) The results of the slope of trend line for the effects of the temperature on globe temperature change and the intercept for the size of the impact of radiant energy gained around by the analysis of the correlation between the maximum temperature and globe temperature can be utilized objective evaluation index of the each point's artificial effects.

The Effects of Climate Elements on Heat-related Illness in South Korea (기후요소가 온열질환자수에 미치는 영향)

  • Jeong, Daeun;Lim, Sook Hyang;Kim, Do-Woo;Lee, Woo-Seop
    • Journal of Climate Change Research
    • /
    • v.7 no.2
    • /
    • pp.205-215
    • /
    • 2016
  • The relationship between the climate and the number of heat-related patients in South Korea was analysed in this study. The number of the patients was 1,612 during the summer 2011 to 2015 according to the Heat-related Illness (HRI) surveillance system. The coefficient of determination between the number of the patients and the daily maximum temperature was higher than that between the number of them and the other elements: the daily mean/minimum temperature and relative humidity. The thresholds of daily maximum and minimum temperature in metropolitan cities (MC) were higher than those in regions except for MC (RMC). The higher the maximum and minimum temperature became, the more frequently the heat-related illness rate was observed. The regional difference of this rate was that the rate in RMC was higher than that in MC. Prolonged heat wave and tropical night tended to cause more patients, which continued for 20 days and 31 days of maximum values, respectively. On the other hand, the relative humidity was not proportional to the number of the patients which was rather decreasing at over 70% of relative humidity.

Effects of Tropical Night and Light Pollution on Cicadas Calls in Urban Areas (도심지 열대야 및 빛공해에 의한 매미 울음 영향)

  • Ki, Kyong-Seok;Gim, Ji-youn;Yoon, Ki-Sang;Lee, Jae-Yoon
    • Korean Journal of Environment and Ecology
    • /
    • v.30 no.4
    • /
    • pp.724-729
    • /
    • 2016
  • Environmental factors that affect the singing of cicadas have not been studied extensively, especially those affecting the cicadas' singing during the nighttime. Therefore, the objective of this study is to identify the effects of tropical night and light pollution on the cicadas' singing in a downtown area. The study sites were an apartment complex in Seocho-gu, Seoul, and the Chiaksan National Park in Wonju-si. The study subjects were Hyalessa fuscata and Cryptotympana atrata, which are the dominant species in Korea during summer. Cicada songs were recorded 24 hours a day, every day. The recording period was between July and August, lasting 25 days at the Seoul site and 14 days at the Chiaksan National Park. Temperature, precipitation, humidity, and amount of sunshine were selected as the environmental factors that potentially affect the cicadas' singing. Statistical analyses included correlations of meteorological factors with the cicadas' singing per hour, per 24 hours, and at nighttime (21:00~04:00). The results showed that: 1) H. fuscata began singing during the dawn hours, and the singing increased in intensity early in the morning. C. atrata's singing reached its peak in the morning and afternoon, ceased during sunset hours, thereby exhibiting a difference in the singing pattern of the two species. 2) The frequency of singing by H. fuscata decreased when C. atrata began to sing intensively in numbers, thereby exhibiting interspecific influence. 3) The results of the correlation analysis between meteorological factors and the singing of H. fuscata and C. atrata showed that both species tended to sing more when the temperature was higher and sang less on rainy days. 4) When limited to nighttime only, C. atrata showed a tendency of singing when the nighttime temperature was high ($24-30^{\circ}C$, average $27^{\circ}C$), whereas H. fuscata did not show a correlation with meteorological factors. However, since H. fuscata sang during the night in areas with artificial lighting, it was concluded that its singing was due to light pollution.

Malaria transmission potential by Anopheles sinensis in the Republic of Korea

  • Lee, Hee-Il;Lee, Jong-Soo;Shin, E-Hyun;Lee, Won-Ja;Kim, Yoon-Young;Lee, Kyung-Ro
    • Parasites, Hosts and Diseases
    • /
    • v.39 no.2
    • /
    • pp.185-192
    • /
    • 2001
  • To evaluate the factors that determine the transmission level of vivax malaria using vectorial capacity, entomological surveys were conducted from .lune to August, 2000. From 6 nights of human-bait collection in Paju, the human biting rate (ma) was counted as 87.5 bites/man/night. The parity of Anopheles sinensis from human baiting collections fluctuated from 41% to 71% (average 48.8%) of which the rate gradually increased as time passed on: 35.2% in Jun. ; 55.0% in July; 66.2% in Aug. From this proportion of parous, we could estimate the probability of daily survival rate of An. sinensis to be 0.79 assumed with 3 days gonotrophic cycle and the expectancy of infective life through 11 days could be defined as 0.073. Blood meal analysis was performed using ELISA to determine the blood meal source. Only 0.8% of blood meals were from human hosts. We could conclude that An. sinensis is highly zoophilic (cow 61.8%) Malaria is highly unstable (stability index < 0.5) in this area. From these data, vectorial capacity VC) was determined to be 0.081. In spite of a high human biting rate (ma), malaria transmission potential is very low due to a low human blood index. Therefore, we could conclude that malaria transmission by An. sinensis is resulted by high population density, not by high transmission potential. For this reason, we need more effort to decrease vector population and vector-human contact to eradicate malaria in Korea.

  • PDF

A mark-release-recapture experiment with Anopheles sinensis in the northern part of Gyeonggi-do, Korea

  • Cho, Shin-Hyeong;Lee, Hyeong-Woo;Shin, E-Hyun;Lee, Hee-Il;Lee, Wook-Gyo;Kim, Chong-Han;Kim, Jong-Taek;Lee, Jong-soo;Lee, Won-Ja;Jong, Gi-Gon;Kim, Tong-Soo
    • Parasites, Hosts and Diseases
    • /
    • v.40 no.3
    • /
    • pp.139-148
    • /
    • 2002
  • In order to study the range of flight and feeding activity of Anopheles sinensis, the dispersal experiment was conducted in Paju city, located in the northern part of Gyeonggi-do, Republic of Korea, during the period of 7th to 28th September 1998. Unfed females An. sinensis were collected in cowshed and released after being marked with fluorescent dye at 23:00 hours on the same day. Released female mosquitoes were recaptured everyday during 21 days using light traps, which were set at 10 sites in the cowsheds located 1, 3, 6, 9 and 12 km north-northwest and north-northeast and at 3 sites located 1, 6 and 9 km toward south-west from the release point. In addition, to study the longest flight distance in one night, we set the light traps at 16 and 20 km toward north-northeast from the release site. All the collected mosquitoes were placed on filter papers and observed on UV transilluminator after treatment with one drop of 100% ethanol. Out of 12,773 females of An. sinensis released, 194 marked females mosquitoes were recaptured, giving 1.52% recapture rate. Of 194, 72 mosquitoes (37 1%) were recaptured in light traps from three places set at 1 km from the release point, 57 mosquitoes (29.4%) from two places at 1-3 km, 41 mosquitoes (21.1%) from three places at 3-6 km, 20 mosquitoes (10.3%) from three places at 6-9 km, and 4 mosquitoes (2.1%) from two places at 9-12 km. Since 170 female mosquitoes (87.6%) out of 194 marked mosquitoes were captured within 6 km from the release point, this flight radius represents the main activity area. An. sinensis was found to be able to fly at least 12 km during one night.

Epidemio-entomological survey of Japanese encephalitis in Korea (한국에 있어서 일본뇌염의 역학적, 매개동물학적 조사)

  • 백두현;주종윤
    • Parasites, Hosts and Diseases
    • /
    • v.29 no.1
    • /
    • pp.67-86
    • /
    • 1991
  • In order to determine the seasonal prevalence and population dynamics of Culex tritaeniorhynchus in relation to the epidemics of Japanese encephalitis, and ecology of these vector mosquito in Kyungpook Province, Korea, studies were con- ducted during the Period of 7 years from 1984 to 1990. Cx. tritaeniorhynchus first collected in June between 4th and 28th, and trapped in large numbers during the period from mid-August to early September, showed a simple sharply pointed one-peaked curve. There was a gradual decrease from mid-September, with a very small number of them collected until early October in every year. The average number of Cx. tritaeniorhynchus rapidly decreased after 1985, and the number became particularly low in 1989. The highest population density, which was observed in August during the initial three years, was found to be delayed in the following years, accompanied by a decrease in the number of mosquitoes. In the trend of nocturnal activity of Cx. tritaeniorhynchus, with oncoming darkness they become very active, gradually decreasing in activity toward mid night, but slightly increasing toward dawn. The immature stages of Cx. tritaeniorhynchus were first found in rice fields contributing to peak adult densities in mid-July. The highest average densities of Cx. trisaeniorhynchus was 14,900 per m2 on mid-August 19th. The larval Cx. tritaeniorhynchus showed high resistance levels and resistance ratios against 5 organophosphorus compounds. In the adult horisontal life table characteristics of Kyungsan colonies of Cx. tritaeniorhynchus under insectary condi- tions, life expectancy was 28.3 days for males and 59.8 days for females. The net reproductive rate was 7.8 and generation time was 25.6 days.

  • PDF