• Title/Summary/Keyword: Tropical climate

Search Result 274, Processing Time 0.03 seconds

The Effects of Climate Elements on Heat-related Illness in South Korea (기후요소가 온열질환자수에 미치는 영향)

  • Jeong, Daeun;Lim, Sook Hyang;Kim, Do-Woo;Lee, Woo-Seop
    • Journal of Climate Change Research
    • /
    • v.7 no.2
    • /
    • pp.205-215
    • /
    • 2016
  • The relationship between the climate and the number of heat-related patients in South Korea was analysed in this study. The number of the patients was 1,612 during the summer 2011 to 2015 according to the Heat-related Illness (HRI) surveillance system. The coefficient of determination between the number of the patients and the daily maximum temperature was higher than that between the number of them and the other elements: the daily mean/minimum temperature and relative humidity. The thresholds of daily maximum and minimum temperature in metropolitan cities (MC) were higher than those in regions except for MC (RMC). The higher the maximum and minimum temperature became, the more frequently the heat-related illness rate was observed. The regional difference of this rate was that the rate in RMC was higher than that in MC. Prolonged heat wave and tropical night tended to cause more patients, which continued for 20 days and 31 days of maximum values, respectively. On the other hand, the relative humidity was not proportional to the number of the patients which was rather decreasing at over 70% of relative humidity.

Physical Oceanographic Characteristics between Hawaii and Chuuk Observed in Summer of 2006 and 2007 (2006년과 2007년 여름에 관측한 Hawaii-Chuuk 사이의 물리특성)

  • Shin, Chang-Woong;Kim, Dong-Guk;Jeon, Dong-Chull;Kim, Eung
    • Ocean and Polar Research
    • /
    • v.33 no.spc3
    • /
    • pp.371-383
    • /
    • 2011
  • To investigate the physical characteristics and variations of oceanic parameters in the tropical central North Pacific, oceanographic surveys were carried out in summer of 2006 and 2007. The survey periods were classified by Oceanic Ni$\tilde{n}$o Index as a weak El Ni$\tilde{n}$o in 2006 and a medium La Ni$\tilde{n}$a in 2007. The survey instruments were used to acquire data on CTD (Conductivity Temperature and Depth), XBT (Expendable Bathythermograph), and TSG (Thermosalinograph). The dominant temporal variation of surface temperature was diurnal. The diurnal variation in 2007, when the La Ni$\tilde{n}$a weather pattern was in place, was stronger than that in 2006. Surface salinity in 2006 was affected by a northwestward branch of North Equatorial Current, which implies that the El Ni$\tilde{n}$o affects surface properties in the North Equatorial Current region. Two salinity minimum layers existed at stations east of Chuuk in both year's observations. The climatological vertical salinity section along $180^{\circ}E$ shows that the two salinity minimum layers exist in $2^{\circ}N{\sim}12^{\circ}N$ region, consistent with our observations. Analysis of isopycnal lines over the salinity section implies that the upper salinity minimum layer is from intrusion of the upper part of North Pacific Intermediate Water into the lower part of South Pacific Subtropical Surface Water and the lower salinity minimum layer is from Antarctic Intermediate Water.

Changes in the Low Latitude Atmospheric Circulation at the End of the 21st Century Simulated by CMIP5 Models under Global Warming (CMIP5 모델에서 모의되는 지구온난화에 따른 21세기 말 저위도 대기 순환의 변화)

  • Jung, Yoo-Rim;Choi, Da-Hee;Baek, Hee-Jeong;Cho, Chunho
    • Atmosphere
    • /
    • v.23 no.4
    • /
    • pp.377-387
    • /
    • 2013
  • Projections of changes in the low latitude atmospheric circulation under global warming are investigated using the results of the CMIP5 ensemble mean. For this purpose, 30-yr periods for the present day (1971~2000) and the end of the $21^{st}$ century (2071~2100) according to the RCP emission scenarios are compared. The wintertime subtropical jet is projected to strengthen on the upper side of the jet due to increase in meridional temperature gradient induced by warming in the tropical upper-troposphere and cooling in the stratosphere except for the RCP2.6. It is also found that a strengthening of the upper side of the wintertime subtropical jet in the RCP2.6 due to tropical upper-tropospheric warmings. Model-based projection shows a weakening of the mean intensity of the Hadley cell, an upward shift of cell, and poleward shift of the Hadley circulation for the winter cell in both hemispheres. A weakening of the Walker circulation, which is one of the most robust atmospheric responses to global warming, is also projected. These results are consistent with findings in the previous studies based on CMIP3 data sets. A weakening of the Walker circulation is accompanied with decrease (increase) in precipitation over the Indo-Pacific warm pool region (the equatorial central and east Pacific). In addition, model simulation shows a decrease in precipitation over subtropical regions where the descending branch of the winter Hadley cell in both hemispheres is strengthened.

Relative contributions of weather systems to the changes of annual and extreme precipitation with global warming

  • Utsumi, Nobuyuki;Kim, Hyungjun;Kanae, Shinjiro;Oki, Taikan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.234-234
    • /
    • 2015
  • The global patterns of annual and extreme precipitation are projected to be altered by climate change. There are various weather systems which bring precipitation (e.g. tropical cyclone, extratropical cyclone, etc.). It is possible in some regions that multiple weather systems affect the changes of precipitation. However, previous studies have assessed only the changes of precipitation associated with individual weather systems. The relative contributions of the weather systems to the changes of precipitation have not been quantified yet. Also, the changes of the relative importance of weather systems have not been assessed. This study present the quantitative estimates of 1) the relative contributions of weather systems (tropical cyclone (TC), extratropical cyclone (ExC), and "others") to the future changes of annual and extreme precipitation and 2) the changes of the proportions of precipitation associated with each weather system in annual and extreme precipitation based on CMIP5 generation GCM outputs. Weather systems are objectively detected from twelve GCM outputs and six models are selected for further analysis considering the reproducibility of weather systems. In general, the weather system which is dominant in terms of producing precipitation in the present climate contributes the most to the changes of annual and extreme precipitation in each region. However, there are exceptions for the tendency. In East Asia, "others", which ranks the second in the proportion of annual precipitation in present climate, has the largest contribution to the increase of annual precipitation. It was found that the increase of the "others" annual precipitation in East Asia is mainly explained by the changes of that in summer season (JJA), most of which can be regarded as the summer monsoon precipitation. In Southeast Asia, "others" precipitation, the second dominant system in the present climate, has the largest contribution to the changes of very heavy precipitation (>99.9 percentile daily precipitation of historical period). Notable changes of the proportions of precipitation associated with each weather system are found mainly in subtropics, which can be regarded as the "hotspot" of the precipitation regime shift.

  • PDF

New roughage source of Pennisetum purpureum cv. Mahasarakham utilization for ruminants feeding under global climate change

  • Mapato, Chaowarit;Wanapat, Metha
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.12
    • /
    • pp.1890-1896
    • /
    • 2018
  • Objective: As the climate changes, it influences ruminant's feed intake, nutrient digestibility, rumen methane production and emission. This experiment aimed to evaluate the effect of feeding Sweet grass (Pennisetum purpureum cv. Mahasarakham; SG) as a new source of good quality forage to improve feed utilization efficiency and to mitigate rumen methane production and emission. Methods: Four, growing crossbred of Holstein Friesian heifers, 14 months old, were arranged in a $4{\times}4$ Latin square design to receive four dietary treatments. Treatment 1 (T1) was rice straw (RS) fed on ad libitum with 1.0% body weight (BW) of concentrate (C) supplementation (RS/1.0C). Treatment 2 (T2) and treatment 3 (T3) were SG, fed on ad libitum with 1.0% and 0.5% BW of concentrate supplementation, respectively (SG/1.0C and SG/0.5C, respectively). Treatment 4 (T4) was total Sweet grass fed on ad libitum basis with non-concentrate supplementation (TSG). Results: The results revealed that roughage and total feed intake were increased with SG when compared to RS (p<0.01) while TSG was like RS/1.0C treatment. Digestibility of nutrients, nutrients intake, total volatile fatty acids (VFAs), rumen microorganisms were the highest and CH4 was the lowest in the heifers that received SG/1.0C (p<0.01). Total dry matter (DM) feed intake, digestibility and intake of nutrients, total VFAs, $NH_3-N$, bacterial and fungal population of animals receiving SG/0.5C were higher than those fed on RS/1.0C. Reducing of concentrate supplementation with SG as a roughage source increased $NH_3-N$, acetic acid, and fungal populations, but it decreased propionic acid and protozoal populations (p<0.05). However, ruminal pH and blood urea nitrogen were not affected by the dietary treatments (p>0.05). Conclusion: As the results, SG could be a good forage to improve rumen fermentation, decrease methane production and reduced the level of concentrate supplementation for growing ruminants in the tropics especially under global climate change.

Application of High Resolution Multi-satellite Precipitation Products and a Distributed Hydrological Modeling for Daily Runoff Simulation (고해상도 다중위성 강수자료와 분포형 수문모형의 유출모의 적용)

  • Kim, Jong Pil;Park, Kyung-Won;Jung, Il-Won;Han, Kyung-Soo;Kim, Gwangseob
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.2
    • /
    • pp.263-274
    • /
    • 2013
  • In this study we evaluated the hydrological applicability of multi-satellite precipitation estimates. Three high-resolution global multi-satellite precipitation products, the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA), the Global Satellite Mapping of Precipitation (GSMaP), and the Climate Precipitation Center (CPC) Morphing technique (CMORPH), were applied to the Coupled Routing and Excess Storage (CREST) model for the evaluation of their hydrological utility. The CREST model was calibrated from 2002 to 2005 and validated from 2006 to 2009 in the Chungju Dam watershed, including two years of warm-up periods (2002-2003 and 2006-2007). Areal-averaged precipitation time series of the multi-satellite data were compared with those of the ground records. The results indicate that the multi-satellite precipitation can reflect the seasonal variation of precipitation in the Chungju Dam watershed. However, TMPA overestimates the amount of annual and monthly precipitation while GSMaP and CMORPH underestimate the precipitation during the period from 2002 to 2009. These biases of multi-satellite precipitation products induce poor performances in hydrological simulation, although TMPA is better than both of GSMaP and CMORPH. Our results indicate that advanced rainfall algorithms may be required to improve its hydrological applicability in South Korea.

Future Projection of Changes in Extreme Temperatures using High Resolution Regional Climate Change Scenario in the Republic of Korea (고해상도 지역기후변화 시나리오를 이용한 한국의 미래 기온극값 변화 전망)

  • Lee, Kyoung-Mi;Baek, Hee-Jeong;Park, Su-Hee;Kang, Hyun-Suk;Cho, Chun-Ho
    • Journal of the Korean Geographical Society
    • /
    • v.47 no.2
    • /
    • pp.208-225
    • /
    • 2012
  • The spatial characteristics of changes in extreme temperature indices for 2070-2099 relative to 1971-2000 in the Republic of Korea were investigated using daily maximum (Tmax) and minimum (Tmin) temperature data from a regional climate model (HadGEM3-RA) based on the IPCC RCP4.5/8.5 at 12.5km grid spacing and observations. Six temperature-based indices were selected to consider the frequency and intensity of extreme temperature events. For validation during the reference period (1971-2000), the simulated Tmax and Tmin distributions reasonably reproduce annual and seasonal characteristics not only for the relative probability but also the variation range. In the future (2070-2099), the occurrence of summer days (SD) and tropical nights (TR) is projected to be more frequent in the entire region while the occurrence of ice days (ID) and frost days (FD) is likely to decrease. The increase of averaged Tmax above 95th percentile (TX95) and Tmin below 5th percentile (TN5) is also projected. These changes are more pronounced under RCP8.5 scenario than RCP4.5. The changes in extreme temperature indices except for FD show significant correlations with altitude, and the changes in ID, TR, and TN5 also show significant correlations with latitude. The mountainous regions are projected to be more influenced by an increase of low extreme temperature than low altitude while the southern coast is likely to be more influenced by an increase of tropical nights.

  • PDF

Carbon stocks and its variations with topography in an intact lowland mixed dipterocarp forest in Brunei

  • Lee, Sohye;Lee, Dongho;Yoon, Tae Kyung;Salim, Kamariah Abu;Han, Saerom;Yun, Hyeon Min;Yoon, Mihae;Kim, Eunji;Lee, Woo-Kyun;Davies, Stuart James;Son, Yowhan
    • Journal of Ecology and Environment
    • /
    • v.38 no.1
    • /
    • pp.75-84
    • /
    • 2015
  • Tropical forests play a critical role in mitigating climate change, and therefore, an accurate and precise estimation of tropical forest carbon (C) is needed. However, there are many uncertainties associated with C stock estimation in a tropical forest, mainly due to its large variations in biomass. Hence, we quantified C stocks in an intact lowland mixed dipterocarp forest (MDF) in Brunei, and investigated variations in biomass and topography. Tree, deadwood, and soil C stocks were estimated by using the allometric equation method, the line intersect method, and the sampling method, respectively. Understory vegetation and litter were also sampled. We then analyzed spatial variations in tree and deadwood biomass in relation to topography. The total C stock was 321.4 Mg C $ha^{-1}$, and living biomass, dead organic matter, and soil C stocks accounted for 67%, 11%, and 23%, respectively, of the total. The results reveal that there was a relatively high C stock, even compared to other tropical forests, and that there was no significant relationship between biomass and topography. Our results provide useful reference data and a greater understanding of biomass variations in lowland MDFs, which could be used for greenhouse gas emission-reduction projects.

The effects of low-protein diets and protease supplementation on broiler chickens in a hot and humid tropical environment

  • Law, Fang Lin;Zulkifli, Idrus;Soleimani, Abdoreza Farjam;Liang, Juan Boo;Awad, Elmutaz Atta
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.8
    • /
    • pp.1291-1300
    • /
    • 2018
  • Objective: This experiment was conducted to investigate the effects of dietary crude protein (CP) level and exogenous protease supplementation on growth performance, serum metabolites, carcass traits, small intestinal morphology and endogenous protease activity in broiler chickens reared under a tropical climate. Methods: A total of 480 day-old male broiler chicks were randomly assigned to eight dietary treatments in a $4{\times}2$ factorial arrangement. The main effects were CP level (21.0%, 19.7%, 18.5%, or 17.2% from 1 to 21 days and 19.0%, 17.9%, 16.7%, or 15.6% from 22 to 35 days) and protease enzyme supplementation (0 ppm or 500 ppm). All experimental diets were fortified with synthetic feed-grade lysine, methionine, threonine and tryptophan to provide the minimum amino acid recommended levels for Cobb 500. Results: Reducing dietary CP linearly reduced (p<0.05) growth performance, serum albumin, total protein, and carcass traits and increased (p<0.05) serum triglycerides and abdominal fat. There was no consistent effect of reducing dietary CP on morphological parameters of the intestine and on the pancreatic and intestinal endogenous protease activity (p>0.05). Protease supplementation improved (p<0.05) feed conversion ratio, body weight gain, carcass yield and intestinal absorptive surface area. Conclusion: Protease supplementation, as measured by growth performance, intestinal morphology and carcass yield, may alleviate the detrimental effects of low protein diets in broiler chickens.