• Title/Summary/Keyword: Trochoid

Search Result 23, Processing Time 0.028 seconds

Internal flow Analysis Research Design and Methodology for Trochoid Pump (트로코이드 펌프 설계방법 및 내부 유동 해석연구)

  • Jeong, Seung Won;Chung, Won Jee;Kim, Myung Sik;Jeon, Ju Yeal
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.1
    • /
    • pp.87-93
    • /
    • 2014
  • This paper provides a methodology for extracting design data from the three-dimensional design software SolidWorks$^{(R)}$, which is based on the existing trochoid pump design equations that are used by hydraulic field engineers. The data extracted from the SolidWorks$^{(R)}$ model are input to a hydraulic analysis software AMESim model to determine the design factors that can influence the properties of a trochoid pump. On the basis of the simulation results, this paper proposes a method to reduce the flow loss by adjusting the outlet angle of the trochoid pump. This proposal was verified by using actual experimental results, which confirmed that adjusting the outlet angle can increase the flow rate. Hence, the results presented in this paper can contribute to the prototyping of a trochoid pump by reducing the cost associated with a trial-and-error design.

Methodology for Simulation of Trochoid Pump (트로코이드 펌프의 시뮬레이션 방법론)

  • Kim, Myung Sik;Chung, Won Jee;Jeong, Seung Won;Jeon, Ju Yeal
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3
    • /
    • pp.465-471
    • /
    • 2013
  • Flow rate control is the uppermost concern for a trochoid hydraulic pump. Cavitation within the flow field of the pump has the greatest effect on the flow control during high-speed pump rotation of approximately 3500~4000 RPM. In this paper, based on AMESim$^{(R)}$ and Solid Works$^{(R)}$, we will present a method to simulate cavitation by analyzing the control factors of a trochoid pump, including the hydraulic pressure change at the outlet, flow rate based on the rotation speed of the inner rotor, leakage through the gap between the outer and inner rotors, and discharging angle of the outlet. The proposed methodology of the [cavitation simulation will enable field engineers to more easily design trochoid pumps, and will allow more concrete control over the flow rate of the pump by realizing an analysis model similar to the actual product model.

Development of Speed Limit Safety Wheel used by Trochoid Gear (트로코이드 기어를 이용한 속도제한 안전바퀴 개발)

  • Lee, Dongkeun;Lee, Siyoung;Hong, Youngjun;Koo, Jae-Mean;Seok, Chang-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.12
    • /
    • pp.1340-1345
    • /
    • 2012
  • Industrial products developed in recent years have focused on usability and stability. Especially, for the products used in daily life, steady efforts have been made to secure the safety. Among them, the products equipped with wheels such as strollers, shopping carts, and carriers can occur the safety accidents by unintended over speed at a ramp. Therefore, development of speed limit device is required to prevent such accidents. However, the existing speed limit devices are very expensive and have a complex drive principle, so it's generally difficult to apply them. In this study, a simple speed limit wheel is suggested which can replace the previous complex and inconvenient speed limit devices. The developed speed limit wheel can be simply applied to existing products by changing the wheels. In addition, it has an advantage to operate only by mechanical mechanism without power supply. Thus it can minimize the cost and waste of resources. For this purpose, the operating condition of the target products was analyzed, and trochoid gear mechanisms were selected for the speed limit. Based on this, finite element analysis was conducted to estimate the operating mechanism. After the prototype of the wheel was produced, the performance under various conditions was tested and has been improved.