• 제목/요약/키워드: Triticum aestivum

검색결과 148건 처리시간 0.023초

Effects of Maturity Stages on the Nutritive Composition and Silage Quality of Whole Crop Wheat

  • Xie, Z.L.;Zhang, T.F.;Chen, X.Z.;Li, G.D.;Zhang, J.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제25권10호
    • /
    • pp.1374-1380
    • /
    • 2012
  • The changes in yields and nutritive composition of whole crop wheat (Triticum aestivum L.) during maturation and effects of maturity stage and lactic acid bacteria (LAB) inoculants on the fermentation quality and aerobic stability were investigated under laboratory conditions. Whole crop wheat harvested at three maturation stages: flowering stage, milk stage and dough stage. Two strains of LAB (Lactobacillus plantarum: LAB1, Lactobacillus parafarraqinis: LAB2) were inoculated for wheat ensiling at $1.0{\times}10^5$ colony forming units per gram of fresh forage. The results indicated that wheat had higher dry matter yields at the milk and dough stages. The highest water-soluble carbohydrates content, crude protein yields and relative feed value of wheat were obtained at the milk stage, while contents of crude fiber, neutral detergent fiber and acid detergent fiber were the lowest, compared to the flowering and dough stages. Lactic acid contents of wheat silage significantly decreased with maturity. Inoculating homofermentative LAB1 markedly reduced pH values and ammonia-nitrogen ($NH_3$-N) content (p<0.05) of silages at three maturity stages compared with their corresponding controls. Inoculating heterofermentative LAB2 did not significantly influence pH values, whereas it notably lowered lactic acid and $NH_3$-N content (p<0.05) and effectively improved the aerobic stability of silages. In conclusion, considering both yields and nutritive value, whole crop wheat as forage should be harvested at the milk stage. Inoculating LAB1 improved the fermentation quality, while inoculating LAB2 enhanced the aerobic stability of wheat silages at different maturity stages.

싱가포르 오염준설토 정화 후 생태 독성 변화 (Changes in the Ecological Toxic Effects of the Contaminated Sediment of Singapore after Treatment)

  • 조은혜;윤성호;황선경;이성종;김홍석;채희훈
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제22권5호
    • /
    • pp.82-88
    • /
    • 2017
  • Contaminated sediment can be treated in order to reuse the treated sediment. Even though the chemical criteria are satisfied, the treated sediment could still impose toxic effects. Therefore, this study investigated the changes in the ecological toxic effects of the contaminated sediment from the J region in Singapore after treatment. The contaminated sediment was subject to sequential soil washing and thermal treatment, followed by pH neutralization. Toxic effects of the contaminated and treated sediments were determined by using Vibrio fischeri ($Microtox^{(R)}$), Triticum aestivum (wheat), and Eisenia foetida (earthworm). After treatment, the concentrations of total petroleum hydrocarbons and heavy metals were decreased by 98% and 59-93%, respectively, and satisfied the Industrial Maximum Values of the Dutch Standard, which were used as the remedial goal. The bioluminescence reduction of V. fischeri decreased significantly, and the earthworm survival increased from 0% to 90% after treatment. The germination rate increased from $0{\pm}0%$ to $75{\pm}13%$ after treatment, but the treated sediment may need additional treatment such as nutrient addition for better plant growth. Overall, this study showed that the treatment of the contaminated sediment satisfactorily removed mixed contaminants, and this led to reduction in toxic effects, suggesting improved potentials for reuse of the treated sediment.

보리ㆍ밀 미열 이삭의 품종간 차이와 주요형질과의 상관 (Varietal Difference of Immature Spike Number and Its Relationship with Other Characters in Barley and Wheat)

  • 김흥배
    • 한국작물학회지
    • /
    • 제40권2호
    • /
    • pp.245-249
    • /
    • 1995
  • 보리, 밀, 등을 수확기에 보면 미열이삭이 생기는데 이 미열이삭의 수가 품종간에 차이를 나타내는 것인가 하는 문제와 그렇다면 그의 유전력은 어떠하며 다른 형질들과의 상관은 어떻게 나타날 것인가에 대한 조사를 한 결과는 아래와 같다. 1. 보리의 미열이삭수는 찰보리가 평균 6도로서 제일 많았고 조강보리와 새올보리가 평균 1도로서 제일 적어 품종간차가 뚜렷하였다. 2. 밀의 미열이삭수도 탑동밀이 3.6도로서 제일 많았고 조광이 1.4도로서 제일 적어 품종간차가 분명하였다. 3. 보리의 미열이삭수의 유전력은 0.85로서 상당히 높았으며 밀은 0.65로서 보리보다는 약간 낮았으나 두 작물 모두 비교적 높은 유전력을 나타내었다. 4. 보리의 미열이삭수는 절간수와 고도의 유의성이 있는 상관을 나타내었고, 지엽장과도 유의성이 있는 상관을 나타내었으나 다른 형질들과는 상관이 낮거나 부의 상관을 나타내었다. 5. 말의 미열이삭과 절간수와의 사이에는 유의성있는 부의 상관을 나타내었고 미열이삭과 다른 형질들 사이에는 상관이 없었다.

  • PDF

춘.추 파성 소맥품종간 교잡에서 등숙기간을 지배하는 유전자 작용에 관한 연구 (Nature of Gene Action for Duration of Grain filling in Crosses of Winter and Spring Wheats(Triticum aestivum L. em Thell))

  • 최병한
    • 한국작물학회지
    • /
    • 제30권2호
    • /
    • pp.131-139
    • /
    • 1985
  • 이모작재배에 적합한 극조숙 양질 다수성 소맥품종육성을 위하여 등수기간에 관여하는 유전자 작용에 대한 연구는 매우 중요하다. 추파성품종 Yam-hill과 Hyslop, 춘파성품종 Red Bobs와 Siete Cellos를 사용하여 4 $\times$ 4 complete diallel crosses F$_1$, F$_2$, BC$_1$ 및 BC$_2$를 작성, Jinks-Hay-man model를 이용하여 등숙기간에 관여하는 유전자 작용을 분석하였다. 본 시험은 오레곤 주립대학교에서 실시되었다. 그 결과의 개요는 다음과 같다. 전등숙기간인 출수에서 생리적 성숙기까지의 기간과 출수에서 개화까지의 기간에서 maternal effect 가 인정되지 않았으며 비대립유전자간 상호작용도 발현되지 않았다. 개화에서 생리적 성숙기까지의 기간에서는 비대립유전자간에 상호작용이 인정되었다. 춘파성 품종인 Red Bobs와 Siete Cellos는 전등숙기간과 출수에서 개화까지의 기간을 지배하는 우성유전자들을 가지고 있었으며 짧은 쪽에 비하여 긴쪽이 우성으로 발현되고 있었다. 대조적으로 추파성 품종인 Yamhill 과 Hyslop은 개화에서 생리적 성숙기까지의 기간을 지배하는 우성유전자들을 가지고 있었으며 긴쪽이 우성으로 작용하고 있었다. 그리고 이 유전자들은 문배친들간에 독립적으로 분포되어 있었다.

  • PDF

Effects of Nitrogen Application Rate on the Yields, Nutritive Value and Silage Fermentation Quality of Whole-crop Wheat

  • Li, C.J.;Xu, Z.H.;Dong, Z.X.;Shi, S.L.;Zhang, J.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제29권8호
    • /
    • pp.1129-1135
    • /
    • 2016
  • Whole-crop wheat (Triticum aestivum L.) as forage has been extensively used in the world. In this study, the effects of N application rates on the yields, nutritive value and silage quality were investigated. The N application rates were 0, 75, 150, 225, and 300 kg/ha. The research results indicated that the dry matter yield of whole-crop wheat increased significantly with increasing N rate up to 150 kg/ha, and then leveled off. The crude protein content and in vitro dry matter digestibility of whole-crop wheat increased significantly with increasing N up to 225 kg/ha, while they no longer increased at N 300 kg/ha. On the contrary, the content of various fibers tended to decrease with the increase of N application. The content of lactic acid, acetic acid and propionic acid in silages increased with the increase of N rate (p<0.05). The ammonia-N content of silages with higher N application rates (${\geq}225kg/ha$) was significantly higher than that with lower N application rates (${\leq}150kg/ha$). Whole-crop wheat applied with high levels of N accumulated more nitrate-N. In conclusion, taking account of yields, nutritive value, silage quality and safety, the optimum N application to whole-crop wheat should be about 150 kg/ha at the present experiment conditions.

Genetic Variation of High Molecular Weight Glutenin (HMW-Glu) Subunit in Korean Wheat

  • Hong, Byung-Hee;Park, Chul-Soo
    • 한국작물학회지
    • /
    • 제43권4호
    • /
    • pp.259-263
    • /
    • 1998
  • High molecular weight glutenin (HMW-Glu) subunit compositions of 73 Korean wheat cultivars and experimental lines were evaluated by using one dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This method is suitable for obtaining a good resolution of 1Dx2 and 1Ax2$^*$ without adverse effects on separation of other HMW-Glu subunits. Korean wheats examined in this study could be divided into 15 different groups on the basis of HMW-Glu subunit compositions. From the wheat lines tested, it was identified that there were three alleles at the Glu-Al, five at the Glu-Bl and three at the Glu-D1 loci. The null allele of the Glu-Al was occurred in high frequency (79.4%), while low frequencies for 1Ax1 (12.3%) and 1Ax2$^*$(8.2%) were found. High frequency (75.3%) of the subunit pairs of 1Bx7+1By8 at the Glu-Bl loci compared with other subunits was found. The frequencies of subunits 1Dx2. 2+1Dy12 and 1Dx2+1Dy12 from the Glu-D1 loci were 54. 8% and 37.0%, respectively. However, a few Korean wheat lines (8.2%) carried 1Dx5 + 1Dy10 subunit pair which are responsible for good breadmaking quality. The information of HMW-Glu subunit compositions provide a useful tool to characterize wheat lines, and can be directly used in selection of breeding lines of different end-use properties.

  • PDF

Characterization of Pyrenophora tritici-repentis (Tan Spot of Wheat) Races in Baltic States and Romania

  • Abdullah, Sidrat;Sehgal, Sunish Kumar;Ali, Shaukat;Liatukas, Zilvinas;Ittu, Mariana;Kaur, Navjot
    • The Plant Pathology Journal
    • /
    • 제33권2호
    • /
    • pp.133-139
    • /
    • 2017
  • Tan spot, caused by the fungus Pyrenophora tritici-repentis, is economically important foliar disease in Latvia, Lithuania, and Romania; however, race structure from Baltic States and Romania is not known. In this study, we performed genotypic and phenotypic race characterization of a large collection of P. tritici-repentis isolates from these countries to determine race structure and utilize this information for better disease management and breeding wheat for tan spot resistance. We characterized 231 single spore isolates from Latvia (n = 15), Lithuania (n = 107), and Romania (n = 109) for Ptr ToxA and Ptr ToxB genes using two genes specific primers. A subset (139) of 231 isolates were further characterized for their race structure by inoculating them individually on tan spot wheat differentials set. Majority (83%) of the 231 isolates amplified Ptr ToxA gene suggesting prevalence of race 1 and 2. Further, phenotypic characterization of 139 isolates also showed wide prevalence of races 1 (68%), 2 (8%), 3 (11%), and 4 (5%) were also identified from Baltic States as well as Romania. Eighteen of the isolates (13%) did not seem to be of any of the eight known races as they lacked Ptr ToxA gene but they behaved like either race 1 or race 2, suggesting possibility of novel toxins in these isolates as their virulence tools.

Improvement of heat and drought photosynthetic tolerance in wheat by overaccumulation of glycinebetaine

  • Wang, Gui-Ping;Hui, Zhen;Li, Feng;Zhao, Mei-Rong;Zhang, Jin;Wang, Wei
    • Plant Biotechnology Reports
    • /
    • 제4권3호
    • /
    • pp.213-222
    • /
    • 2010
  • Within their natural habitat, crops are often subjected to drought and heat stress, which suppress crop growth and decrease crop production. Causing overaccumulation of glycinebetaine (GB) has been used to enhance the crop yield under stress. Here, we investigated the response of wheat (Triticum aestivum L.) photosynthesis to drought, heat stress and their combination with a transgenic wheat line (T6) overaccumulating GB and its wild-type (WT) Shi4185. Drought stress (DS) was imposed by controlling irrigation until the relative water content (RWC) of the flag leaves decreased to between 78 and 82%. Heat stress (HS) was applied by exposing wheat plants to $40^{\circ}C$ for 4 h. A combination of drought and heat stress was applied by subjecting the drought-stressed plants to a heat stress as above. The results indicated that all stresses decreased photosynthesis, but the combination of drought and heat stress exacerbated the negative effects on photosynthesis more than exposure to drought or heat stress alone. Drought stress decreased the transpiration rate (Tr), stomatal conductance (Gs) and intercellular $CO_2$ concentration (Ci), while heat stress increased all of these; the deprivation of water was greater under drought stress than heat stress, but heat stress decreased the antioxidant enzyme activity to a greater extent. Overaccumulated GB could alleviate the decrease of photosynthesis caused by all stresses tested. These suggest that GB induces an increase of osmotic adjustments for drought tolerance, while its improvement of the antioxidative defense system including antioxidative enzymes and antioxidants may be more important for heat tolerance.

제초제(除草劑) 신기능(新機能) 작물품종(作物品種) 이용(利用) 잡초방제(雜草防除) 기술(技術) (Weed Management Using a Potential Allelopathic Crop)

  • 김길웅;박광호
    • 한국잡초학회지
    • /
    • 제17권1호
    • /
    • pp.80-93
    • /
    • 1997
  • Allelopathic compounds as naturally occurring herbicide have originally reported from local vegetation since B.C. 300. These compounds are known as secondary plant metabolites which released from plants into the environment often attract or repel, nourish or poison other organisms. In recent, many natural plant allelochemicals be used to attempt to biologically or ecologically control weed among worldwide weed scientists. Some allelochemicals have also used as fungicides, insecticides, and nematodicides, and were less than man-made agrochemicals to damage the global ecosystem. It makes efficient use of resources internal to the farm, relies on a minimum of purchased inputs. Some scientists selected for allelopathic activity when breeding weed-controlling cultivars of rice, sorghum, cucumber, surflower etc. Thus, this paper is focused on allelopathic compounds isolated from cultivated crop with the high potential of prospective herbicides. The most environmentally acceptable and sustainable approach to utilization of allelopathy for weed control is to develop plant cultivars with proven allelopathic characteristics. In rice accessions, there are 60 cultivars/lines which have known as allelopathic activity and some of these cultivars control weed more less 90% within certain radius of activity. These accessions are originated from 15 countries including Korea, Japan, USA, India, Philippines, Indonesia, Laos, Taiwan, Afghanistan, Mali, Pakistan, Colombia, Egypt, China, and Dom. Rep. From these cultivars, the most common allelopathic compounds identified in rice are p-Hydroxybenzoic, Vanillic, p-Coumaric, and Ferulic acids. In addition, allelopathic lines of the following crop have shown inhibition of weed growth : beet (Beta vulgaris), lupin(Lupinus spp.), com(Zea mays), Wheat(Triticum aestivum), oats(Avena spp.) peas(Pisum sativum), barley(Hordeum vulgare), rye(Secale cereale), and cucumber(Cucumis sativus). Thus, future allelopathy research must be designed its potentially phytotoxic propertices and the ecotoxic features of the allelochemicals from release to degradation ; its ecological sustainability, its allelopathic effect in early growth. stages, and selectivity properties in combination with chemical stages, and selectivity properties in combination with chemical concentrations. Also, research approach in allelopathy might be screened for highly allelopathic germplasm collection of crops, the idea being to ultimately transfer this agronomic character into improved cultivars by either conventional breeding or other genetic transfer techniques.

  • PDF

Characterization of Crop Residue-Derived Biochars Produced by Field Scale Biomass Pyrolyzer

  • Jung, Won-K.
    • 한국토양비료학회지
    • /
    • 제44권1호
    • /
    • pp.1-7
    • /
    • 2011
  • Application of biochar to soils is proposed as a significant, long-term, sink for atmospheric carbon dioxide in terrestrial ecosystems. In addition to reducing emissions and increasing the sequestration of carbon, production of biochar and its application to soils will contribute improve soil quality and crop productivity. Objectives were i) to evaluate biochar productivity from crop residues using a low-cost field scale mobile pyrolyzer and ii) to evaluate characteristics of feedstocks and biochars from locally collected crop residues. Pyrolysis experiments were performed in a reactor operated at $400-500^{\circ}C$ for 3-4 hours using biomass samples of post-harvest residues of corn (Zea mays L.), cotton (Gossypium spp.), rice (Oryza sativa L.), sorghum (Sorghum bicolor L.) and wheat (Triticum aestivum L.). Feedstocks differed, but average conversion to biochar was 23%. Carbon content of biomass feedstock and biochar samples were 445 g $kg^{-1}$ and 597 g $kg^{-1}$, respectively. Total carbon content of biochar samples was 34% higher than its feedstock samples. Significant increases were found in P, K, Ca, Mg, and micro-nutrients contents between feedstock and biochar samples. Biochar from corn stems and rice hulls can sequester by 60% and 49% of the initial carbon input into biochar respectively when biochar is incorporated into the soils. Pyrolysis conversion of corn and rice residues sequestered significant amounts of carbon as biochar which has further environmental and production benefits when applied to soils. Field experiment with crop residue biochar will be investigated the stability of biochars to show long-term carbon sequestration and environmental influences to the cropping systems.