• Title/Summary/Keyword: Triticum

Search Result 179, Processing Time 0.029 seconds

Low pH stress responsive transcriptome of seedling roots in wheat (Triticum aestivum L.)

  • Hu, Haiyan;He, Jie;Zhao, Junjie;Ou, Xingqi;Li, Hongmin;Ru, Zhengang
    • Genes and Genomics
    • /
    • v.40 no.11
    • /
    • pp.1199-1211
    • /
    • 2018
  • Soil acidification is one of major problems limiting crop growth and especially becoming increasingly serious in China owing to excessive use of nitrogen fertilizer. Only the STOP1 of Arabidopsis was identified clearly sensitive to proton rhizotoxicity and the molecular mechanism for proton toxicity tolerance of plants is still poorly understood. The main objective of this study was to investigate the transcriptomic change in plants under the low pH stress. The low pH as a single factor was employed to induce the response of the wheat seedling roots. Wheat cDNA microarray was used to identify differentially expressed genes (DEGs). A total of 1057 DEGs were identified, of which 761 genes were up-regulated and 296 were down-regulated. The greater percentage of up-regulated genes involved in developmental processes, immune system processes, multi-organism processes, positive regulation of biological processes and metabolic processes of the biological processes. The more proportion of down-regulation genes belong to the molecular function category including transporter activity, antioxidant activity and molecular transducer activity and to the extracellular region of the cellular components category. Moreover, most genes among 41 genes involved in ion binding, 17 WAKY transcription factor genes and 17 genes related to transport activity were up-regulated. KEGG analysis showed that the jasmonate signal transduction and flavonoid biosynthesis might play important roles in response to the low pH stress in wheat seedling roots. Based on the data, it is can be deduced that WRKY transcription factors might play a critical role in the transcriptional regulation, and the alkalifying of the rhizosphere might be the earliest response process to low pH stress in wheat seedling roots. These results provide a basis to reveal the molecular mechanism of proton toxicity tolerance in plants.

Effect of picloram and 2,4-D on plant regeneration from mature and immature embryos of moroccan durum wheat varieties

  • Ahansal, Khadija;Aadel, Hanane;Udupa, Sripada Mahabala;Gaboun, Fatima;Abdelwahd, Rabha;Ibriz, Mohammed;Iraqi, Driss
    • Journal of Plant Biotechnology
    • /
    • v.49 no.2
    • /
    • pp.131-138
    • /
    • 2022
  • An efficient genetic transformation protocol is a fundamental requirement for high regeneration capacity from cultivated durum wheat (Triticum durum) varieties. In this study, wereportedtheeffectsoftwoauxins,2,4-dichlorophenoxyaceticacid(2,4-D)and4-amino-3,5,6-trichloropicoli nicacid(picloram), at a concentration of 2 mg/Laloneandincombination on the embryogenic callus and plantlet regeneration of four durum wheat varieties (Amria, Chaoui, Marouane, and Tomouh) using mature embryos (MEs) and immature embryos (ImEs). Significanteffectsofvariety,culturemedium(theauxinused),andvariety-mediuminteraction were observed on the callus weight and plantlet regeneration of both MR and ImE explants. The medium used for callus induction significantly affected plantlet regeneration (p < 0.001). Comparedto2,4-D, picloram led to a higher plantlet regeneration rate in both ME and ImE explants (19.8% and 40.86%, respectively). Plantlet regeneration also varied significantly depending on the variety and medium used. PicloramledtohighplantletregenerationofbothME and ImE explants in all varieties except Tomouh, which showed high plantlet regeneration of ME explants in 2,4-D. A comparison of ME and ImE responses indicated that ImEs are the best explants for high plantlet regeneration in durum wheat. Ourfindingssuggestthatpicloramisthebestauxin and should be used instead of 2,4-D due to its positive effect on increasing plant regeneration of durum wheat ME and ImE explants.

The Effects of Sodium Chloride and the Cultivation Method on Antioxidant Compounds and Activities in Wheat (Triticum aestivum) Sprouts (염화나트륨 처리 및 재배방법이 새싹밀의 항산화 성분 및 활성에 미치는 영향)

  • Yang, Ji Yeong;Lee, HanGyeol;Seo, Woo Duck;Lee, Mi Ja;Song, Seung-Yeob;Choi, June-Yeol;Kim, Hyun Young
    • The Korean Journal of Food And Nutrition
    • /
    • v.35 no.3
    • /
    • pp.213-222
    • /
    • 2022
  • Sprouts have various health benefits. Specifically, wheat sprouts are rich in bioactive compounds, such as vitamins and polyphenols. Elicitation induces and enhances secondary metabolite biosynthesis in plants. Therefore, in this study, we investigated the effects of sodium chloride (NaCl) treatments on the growth profile, free amino acid content, and antioxidant activity of germinated wheat (Triticum aestivum). Wheat seeds were germinated at 20℃ for 10 days and treated with 0, 2, 4, 7.5, and 10 mM of NaCl 10 days before harvesting. Treating the soil bed with NaCl increased the nutritional component amounts, such as free amino acids and γ-aminobutyric acid. The chlorophyll a and b concentrations were the highest in the hydroponic system treated with 7.5 mM NaCl. In addition, the polyphenol and flavonoid contents of sprouts treated with 2 and 7.5 mM NaCl were 1.94 and 1.34 times higher than that of the control sprouts (0 mM NaCl, water only), respectively. These results suggest that 2 to 4 mM NaCl treatments improve the nutritional and food quality of wheat sprouts more than water only.

Multivariate Analysis of Agronomic Characteristics of Wheat (Triticum spp.) Germplasm

  • Pilmo Sung;Mesfin Haile Kebede;Seung-Bum Lee;Eunae Yoo;Gyu-Taek Cho;Nayoung Ro
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.303-303
    • /
    • 2022
  • The purpose of this study was to evaluate agronomic characteristics and identify the useful traits to utilize the wheat genetic resources for breeding programs by understanding the phenotypic variation among germplasm through multivariate analysis. In this study, a total of 394 wheat accessions were characterized for 15 agronomic traits using the National Agrobiodiversity Center (NAC) descriptor list, of which 31 accessions from 6 species and 363 unidentified accession (Triticum spp.) available at the NAC, Rural Development Administration (RDA), Korea. Growth characteristics such as leaf width, culm length, spike length, spikelet length, solid stemmed, days to heading, days to maturity, grain-filing period, and also seed characteristics such as width, height, area, perimeter, circle, solidity, and germination percent were studied. Among the 15 agronomic characteristics, the germination percent showed the smallest variation between resources (CV = 0.4%), and the spikelet length (CV = 66.5%) showed the highest variation. A strong positive correlation was found between seed traits such as seed height and seed area (r = 0.90), seed height and seed perimeter (r = 0.87) and seed length and width (r = 0.80). Principal component analysis (PCA) was conducted and the first five principal components comprised 76.7% of the total variance. Among the first five PCs, PCI accounted for 28.5% and PC2 for 20.0%. Wheat resources (394) were classified into four clusters based on cluster analysis, consisting of 215 resources(I), 117 resources(II), 48 resources(III), and 14 resources(IV). Among the clusters, the resources belonging to Cluster III showed the lowest seed width, height, area, and perimeter characteristics compared to other clusters. The wheat resources belonging to cluster IV had small seed width and low germination percent, but took longer to form heads and mature than resources in other clusters. These results will serve as the basis for further genetic diversity studies, and important agronomic characteristics will be used for improving wheat, including developing high-yielding and resistant varieties to biotic and abiotic stresses via breeding programs.

  • PDF

Studies on Cytological Characteristics of Elymus humidus as Genetic Resources Compared to Common Wheat (Triticum aestivum L.)

  • Ji-Yoon Han;Seong-Wook Kang;Sejin Oh;Yumi Lee;Myoung-Jae Shin;Sukyeung Lee;Seong-Woo Cho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.3
    • /
    • pp.216-223
    • /
    • 2023
  • This study aimed to identify and compare the characteristics of Elymus humidus on common wheat (Triticum aestivum L. cv. Chinse Spring, CS). The seed length, width, height, and weight of E. humidus were smaller than those of the CS. In particular, the germination rate of E. humidus was substantially lower than that of CS. In the anatomical dissection of the leaf, E. humidus showed a considerably different xylem diameter of the main vascular bundle in the main vein; however, there was no difference in the phloem of the main vascular bundle compared with the xylem and phloem of the main vascular bundle in the main vein of CS, although E. humidus showed a leaf structure similar to that of CS. In addition, E. humidus had a thinner epidermis than that of CS. Regarding stomatal traits, E. humidus showed a graminoid stomata type similar to that of CS. On the adaxial and abaxial sides, the density, length, and width of the stomata in E. humidus were smaller than those in CS, whereas the distance between stomata in E. humidus was greater than that in CS. The chromosomes of E. humidus were classified as long and short based on their respective lengths. Long chromosomes were classified based on the ratio of the long arm to the short arm e.g., 1:1 or 2:1. Short chromosomes showed the same trend and some short chromosomes were microsatellites. To evaluate genetic diversity, 38 barley EST markers with polymorphisms between E. humidus and CS were selected from 236 barley EST markers.

Phenolic Compounds and Radical Scavenging Activity of the Korean Wheat (Triticum aestivum L.) according to Germination Times (발아시간에 따른 국산밀(Triticum aestivum L.)의 페놀성분 및 라디칼 소거활성)

  • Ham, Hyeonmi;Choi, In Duck;Park, Hye Young;Yoon, Soon Duck;Oh, Se Gwan;Kim, Wook Han;Woo, Koan Sik
    • The Korean Journal of Food And Nutrition
    • /
    • v.28 no.5
    • /
    • pp.737-744
    • /
    • 2015
  • The purpose of this study was to evaluate the phenolic compounds and radical scavenging activity of the Korean wheat (Triticum aestivum L.) according to germination times. The cultivated varieties were T. aestivum L. cv. Keumkang, Jokyung, Baekjoong, and Goso. The total polyphenol, flavonoid, and tannin contents of the ethanolic extracts of wheat were significantly increased with longer germination times. The total polyphenol contents of ungerminated Keumkang, Jokyung, Baekjoong, and Goso were 13.74, 15.05, 16.84, and 13.02 mg GAE/100 g, respectively, and the contents in germinated wheats increased with longer germination times. The total flavonoid contents of ungerminated wheats were 5.11, 6.72, 6.28, and 5.43 mg CE/100 g, and the total tannin content was 9.19, 8.86, 8.93, and 8.66 mg TAE/100 g, respectively. The total flavonoid and tannin contents were substantially increased with longer germination times. The DPPH radical scavenging activity of ungerminated Keumkang, Jokyung, Baekjoong, and Goso was 30.77, 23.88, 25.35, and 18.73 mg TE/100 g, and the activity in wheats germinated at $25^{\circ}C$ for 72 hours was 47.47, 44.17, 38.22, and 42.85 mg TE/100 g, respectively. The ABTS radical scavenging activity of ungerminated wheats was 3.42, 88.53, 88.87, and 79.97 mg TE/100 g, respectively, and the activity in germinated wheats increased with longer germination times.

Comparative RFLP Analysis of Chromosome 2M of Aegilops comosa Sibth et Sm. Relative to Wheat (T. aestivum L.)

  • Park, Y. J.;Shim, J. W.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.43 no.2
    • /
    • pp.120-123
    • /
    • 1998
  • Based on the co-linearity in the Triticeae, comparative RFLP analysis of 2M chromosome of Ae. comosa Sibth et Sm. was performed with 2MS and 2M additional lines of Triticum aestivum L. cv. Chinese Spring. Among the wheat RFLP probes conserved in the short arms of wheat chromosome 2, those above psr912 were located on the long arms of 2M in Aegilops comosa. The rest probes on the short arm and all the probe sequences on the long arm of group 2 chromosome in wheat were conserved on the equivalent chromosomal position in Aegilops comosa. So, it is apparent that some chromosomal segment from the short arm had been transferred to long arm while reconstructing 2M chromosome relative to wheat chromosomes. The break-point was located between psr912 and psr131 of the short arm. This rearrangement of chromosome 2M might be a molecular evidence of the M genome speciation from an ancestral type.

  • PDF

Development and Characterization of Anti-gliadin Polyclonal Antibody in Wheat

  • Chang, Suk Joo;Hong, Byung Hee;Seo, Yang Weon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.4
    • /
    • pp.339-344
    • /
    • 1999
  • Immunological method has been applied in biochemical genetic analysis of seed storage proteins. We developed and characterized anti-gliadin polyclonal antibody (AGPab) specific to gliadin fractions whose quality and quantity were known to be associated with wheat end-use quality. Reactions of anti-gliadin polyclonal antibody (AGPab) to gliadin were linearly decreased as AGPab and antigen were diluted. Dot-blot and immunoblot assay showed that produced AGPab specifically reacted to gliadin and mainly $\alpha$-, $\beta$-, and ${\gamma}$-gliadin subunits. Enzyme-linked immuno- sorbent assay (ELISA) was applied for quantifi-cation of gliadins in Korean wheat cultivars and breeding lines by using AGPab. High reactions between AGPab and gliadins were found in wheat cultivars Olmil and Olgeurumil. Significant difference of optical densities for alcohol soluble proteins among crop species was found, as wheat showed the highest value (0.697) followed by rye (0.295), and barley (0.066).

  • PDF

장미 및 밀 배양세포의 생체이물질 대사에서 Cytochrome p450의 역할

  • 이인철
    • Journal of Plant Biology
    • /
    • v.37 no.2
    • /
    • pp.223-229
    • /
    • 1994
  • 장미(Rosa sp. cv. Paul's Scarlet)와 밀(Triticum aestivum L.)의 조직 배양체에서 polychlorinated biphenyl(PCB)의 대사를 조사하였다. 조사된 PCB는 2개에서 6개까지의 치환 염소를 보유한 19종류였다. PCB를 투여하여 96시간 동안 배양시킨 결과 장미에서는 9종, 밀에서는 5종류가 30% 이상의 대사율을 나타내었다. 대사율이 높은 PCB들은 모두 2번 위치에 치환 염소를 갖는다는 공통점이 있으며, 대사율이 낮은 PCB일수록 평면적 구조를 갖는 것으로 나타났다. 한편 밀의 배양세포는 para- 위치에 치환 염소를 갖는 PCB에 대한 대사 활성이 전혀 없었다. 두 종의 배양 세포 모두에서 phenobarbital을 처리한 경우 non-p-chlorinated biphenyl의 대사율만이 증가하였으며, parachlorinated biphenyl의 대사 활성은 phenobarbital 처리에 영향을 받지 않았다. 또한 phenobarbital의 처리에 의하여 cinnamate-4-hydroxylase의 활성이 140% 이상 증가하였다. 이상의 결과는 식물체에서의 PCB 대사가 그 구조에 의해 결정될 수 있으며, 특히 para- 위치의 치환 염소를 보유한 종류와 그렇지 않은 종류는 별개의 cytochrome p450의 동위 효소에 의하여 대사될 수 있음을 보여주고 있다.

  • PDF

비소종(Arsenite, Arsenate, DMA)에 따른 토양독성 비교분석

  • Lee U-Mi;Lee Ju-Yeong;Im Seung-Yun;Jeong Hye-Won;An Yun-Ju
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.175-177
    • /
    • 2005
  • Effect of arsenite, arsenate and dimethylarsinic acid (DMA) on the growth of seedling plants were investigated in order to compare the toxicity of arsenic species in soil environments. Test plants were mung bean (Phaseolus radiatus), wheat (Triticum aestivum), barely (Hordeum vulgare), cucumber (Cucumis sativus L.). Seedling growth in As-contaminated soil were significantly reduced in all test species. Arsenite was more toxic than arsenate and DMA. Among the test plants, mung bean was most sensitive to arsenic, followed by cucumber, wheat, and barely.

  • PDF