• Title/Summary/Keyword: Tripterygium

Search Result 56, Processing Time 0.026 seconds

Vegetation Structure of Taxus cuspidata Communities in Subalpine Zone (아고산대 주목 군락의 식생구조에 관한 연구)

  • Cho, Min-Gi;Chung, Jae-Min;Jung, Hye-Ran;Kang, Mee-Young;Moon, Hyun-Shik
    • Journal of agriculture & life science
    • /
    • v.46 no.5
    • /
    • pp.1-10
    • /
    • 2012
  • This study analyzed on the characteristics of vegetation structure, species composition and DBH class distribution in order to conservation and effective management for Taxus cuspidata community in Mt. Seorak, Mt. Balwang, Mt. Taebaek, and Mt. Odae. The vegetation in upper, subtree and shrub layer was consist of 11, 22, 33 species in Mt. Seorak, 15, 21, 33 species in Mt. Balwang, 10, 23, 36 species in Mt. Taebaek, and 14, 30, 32 species in Mt. Odae. As a result of importance value at all study sites, T. cuspidata and Abies nephrolepis in upper layer, T. cuspidata, A. nephrolepis and Acer komarovii in subtree layer, and Tripterygium regelii in shrub layer were high, respectively. Species diversity in upper and subtree layer at all study sited were ranged 0.834~1.234 and 1.125~1.329, respectively. According to the DBH class of major three species, T. cuspidata in Mt. Odae site showed a reverse J-shaped curve, which was estimated that T. cuspidata community of this site might be maintained continuously as a stable state.

Vegetation Structure of Picea jezoensis Communities in Mt. Deogyu and Mt. Gyebang (덕유산과 계방산 가문비나무 군락의 식생구조에 관한 연구)

  • Cho, Min-Gi;Chung, Jae-Min;Jung, Hye-Ran;Kang, Mee-Young;Moon, Hyun-Shik
    • Journal of agriculture & life science
    • /
    • v.46 no.6
    • /
    • pp.33-41
    • /
    • 2012
  • This study was conducted to provide the informations for conservation and effective management of Picea yezoensis community in Mt. Deogyu and Mt. Gyebang. The vegetation of tree, subtree and shrub layer was consist of 8, 20, 26 species in Mt. Deogyu, and 12, 23, 33 species in Mt. Gyebang. Importance value by layer P. yezoensis, Betula ermanii, Abies koreana at tree layer, B. ermanii, Quercus mongolica at subtree layer, and Sasa borealis at shrub layer in Mt. Deogyu, and P. yezoensis, B. ermanii, Abies nephrolepis at tree layer, Acer komarovii and A. ukurunduense at subtree layer, and Tripterygium regelii at shrub layer in Mt. Gyebang were high, respectively. Species diversity in Mt. Deogyu and Mt. Gyebang were 0.779 and 0.984 at tree layer, 1.052 and 1.161 at subtree layer, and 0.823 and 1.304 at shrub layer, respectively. According to the DBH class of major species, P. yezoensis in Mt. Deogyu showed a reverse J-shaped curve, which was estimated that P. yezoensis community of this site might be maintained continuously as a stable state.

Species Composition Dynamics and Seedling Density Along Altitudinal Gradients in Coniferous Forests of Seorak Mountain (설악산 상록침엽수림의 고도별 종조성 및 치수 밀도 변화)

  • Kim, Ji-Dong;Byeon, Seong Yeob;Song, Ju Hyeon;Chae, Seung Beom;Kim, Ho Jin;Lee, Jeong Eun;Yun, I Seul;Yun, Chung Weon
    • Journal of Korean Society of Forest Science
    • /
    • v.109 no.2
    • /
    • pp.115-123
    • /
    • 2020
  • The vertical distribution of vegetation can be classified according to the altitudinal gradient and the distribution of species along this gradient. The purpose of this study was to analyze the vegetation structure, species composition, dimensional density, and change according to altitude. These data illustrate the distribution of coniferous forest by altitude. By order of importance, the vegetation structure of this mixed forest consisted of Abies nephrolepis (12.2), Pinus koraiensis (10.86), and Acer komarovii (8.11). As a result of species composition according to the altitude, A. nephrolepis and Maianthemum bifolium increased in importance with increasing altitude. Tripterygium regelii emerged between 1,400 m and 1,600 m, which indicates that forest gaps were frequent at that elevation. The species diversity index was the highest from 1,400-1,500 m and coincided with the presence of forest gaps. The changes in A. nephrolepis of evergreen conifers increased significantly from 402 ± 5.4 ha.-1 to 528 ± 11.6 ha.-1 for two years, and decreased from 57 ± 1.3 ha.-1 to 56 ± 1.6 ha.-1 for P. koraiensis. The density of A. nephrolepis and P. koraiensis seedlings significantly increased at 1,500-1,600 m. The results of this study can be used as a basis to identify the mast seeding year with the increase or decrease of seedlings. In addition to documenting the evergreen conifer population of the Seorak Mountain, these results can be built upon for future monitoring of seedlings mortality.

Review of Anti-Leukemia Effects from Medicinal Plants (항 백혈병작용에 관련된 천연물의 자료조사)

  • Pae Hyun Ock;Lim Chang Kyung;Jang Seon Il;Han Dong Min;An Won Gun;Yoon Yoo Sik;Chon Byung Hun;Kim Won Sin;Yun Young Gab
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.3
    • /
    • pp.605-610
    • /
    • 2003
  • According to the Leukemia and Lymphoma Society, leukemia is a malignant disease (cancer) that originates in a cell in the marrow. It is characterized by the uncontrolled growth of developing marrow cells. There are two major classifications of leukemia: myelogenous or lymphocytic, which can each be acute or chronic. The terms myelogenous or lymphocytic denote the cell type involved. Thus, four major types of leukemia are: acute or chronic myelogenous leukemia and acute or chronic lymphocytic leukemia. Leukemia, lymphoma and myeloma are considered to be related cancers because they involve the uncontrolled growth of cells with similar functions and origins. The diseases result from an acquired (not inherited) genetic injury to the DNA of a single cell, which becomes abnormal (malignant) and multiplies continuously. In the United States, about 2,000 children and 27,000 adults are diagnosed each year with leukemia. Treatment for cancer may include one or more of the following: chemotherapy, radiation therapy, biological therapy, surgery and bone marrow transplantation. The most effective treatment for leukemia is chemotherapy, which may involve one or a combination of anticancer drugs that destroy cancer cells. Specific types of leukemia are sometimes treated with radiation therapy or biological therapy. Common side effects of most chemotherapy drugs include hair loss, nausea and vomiting, decreased blood counts and infections. Each type of leukemia is sensitive to different combinations of chemotherapy. Medications and length of treatment vary from person to person. Treatment time is usually from one to two years. During this time, your care is managed on an outpatient basis at M. D. Anderson Cancer Center or through your local doctor. Once your protocol is determined, you will receive more specific information about the drug(s) that Will be used to treat your leukemia. There are many factors that will determine the course of treatment, including age, general health, the specific type of leukemia, and also whether there has been previous treatment. there is considerable interest among basic and clinical researchers in novel drugs with activity against leukemia. the vast history of experience of traditional oriental medicine with medicinal plants may facilitate the identification of novel anti leukemic compounds. In the present investigation, we studied 31 kinds of anti leukemic medicinal plants, which its pharmacological action was already reported through many experimental articles and oriental medical book: 『pharmacological action and application of anticancer traditional chinese medicine』 In summary: Used leukemia cellline are HL60, HL-60, Jurkat, Molt-4 of human, and P388, L-1210, L615, L-210, EL-4 of mouse. 31 kinds of anti leukemic medicinal plants are Panax ginseng C.A Mey; Polygonum cuspidatum Sieb. et Zucc; Daphne genkwa Sieb. et Zucc; Aloe ferox Mill; Phorboc diester; Tripterygium wilfordii Hook .f.; Lycoris radiata (L Her)Herb; Atractylodes macrocephala Koidz; Lilium brownii F.E. Brown Var; Paeonia suffruticosa Andr.; Angelica sinensis (Oliv.) Diels; Asparagus cochinensis (Lour. )Merr; Isatis tinctoria L.; Leonurus heterophyllus Sweet; Phytolacca acinosa Roxb.; Trichosanthes kirilowii Maxim; Dioscorea opposita Thumb; Schisandra chinensis (Rurcz. )Baill.; Auium Sativum L; Isatis tinctoria, L; Ligustisum Chvanxiong Hort; Glycyrrhiza uralensis Fisch; Euphorbia Kansui Liou; Polygala tenuifolia Willd; Evodia rutaecarpa (Juss.) Benth; Chelidonium majus L; Rumax madaeo Mak; Sophora Subprostmousea Chunet T.ehen; Strychnos mux-vomical; Acanthopanax senticosus (Rupr.et Maxim.)Harms; Rubia cordifolia L. Anti leukemic compounds, which were isolated from medicinal plants are ginsenoside Ro, ginsenoside Rh2, Emodin, Yuanhuacine, Aleemodin, phorbocdiester, Triptolide, Homolycorine, Atractylol, Colchicnamile, Paeonol, Aspargus polysaccharide A.B.C.D, Indirubin, Leonunrine, Acinosohic acid, Trichosanthin, Ge 132, Schizandrin, allicin, Indirubin, cmdiumlactone chuanxiongol, 18A glycyrrhetic acid, Kansuiphorin A 13 oxyingenol Kansuiphorin B. These investigation suggest that it may be very useful for developing more effective anti leukemic new dregs from medicinal plants.

Vegetation Change of Abies koreana Habitats in the Subalpine Zone of Mt. Jirisan over Eight Years (지리산 아고산대 구상나무 자생지의 8년간 식생 변화)

  • Da-Eun Park;Jeong-Eun Lee;Go Eun Park;Hee-Moon Yang;Ho-Jin Kim;Chung-Weon Yun
    • Journal of Korean Society of Forest Science
    • /
    • v.113 no.2
    • /
    • pp.222-238
    • /
    • 2024
  • Coniferous species in subalpine ecosystems are known to be highly sensitive to climate change. Therefore, it is becoming increasingly important to monitor community and population dynamics. This study monitored 37 plots within the distribution area of Abies koreana on Mt. Jirisan for a period of eight years. We analyzed the importance value, density of living stems, mortality rate, recruitment rate, basal area, DBH (diameter of breast height) class distribution, and tree health status. Our results showed changes in the importance value based on the tree stratum, with A. koreana decreasing by 3.6% and Tripterygium regelii increasing by 2.5% in the tree layer. Between 2015 and 2023, there were 149 dead trees/ha (17.99% mortality rate) and 12 living trees/ha (1.02% recruitment rate) of A. koreana. The decrease in basal area was attributed to a decrease in the number of living trees. Tree mortality occurred in all DBH classes, with a particularly high decline in the <10 cm class (65 trees/ha reduced). In terms of changes in tree health status, the population of alive standing (AS) type trees, initially consisting of 539 trees/ha, has been transformed into alive standing (AS), alive lean (AL), and death standing (DS), accounting for 69.7%, 0.5%, and 13.8%, respectively. Meanwhile, DS-type trees have transitioned into dead broken (DB) and dead fallen (DF) types. This phenomenon is believed to be caused by strong winds in the subalpine region that pull up the rootlets from the soil. Further research on this finding is recommended.

Triptolide-induced Transrepression of IL-8 NF-${\kappa}B$ in Lung Epithelial Cells (폐상피세포에서 Triptolide에 의한 NF-${\kappa}B$ 의존성 IL-8 유전자 전사활성 억제기전)

  • Jee, Young-Koo;Kim, Yoon-Seup;Yun, Se-Young;Kim, Yong-Ho;Choi, Eun-Kyoung;Park, Jae-Seuk;Kim, Keu-Youl;Chea, Gi-Nam;Kwak, Sahng-June;Lee, Kye-Young
    • Tuberculosis and Respiratory Diseases
    • /
    • v.50 no.1
    • /
    • pp.52-66
    • /
    • 2001
  • Background : NF-${\kappa}B$ is the most important transcriptional factor in IL-8 gene expression. Triptolide is a new compound that recently has been shown to inhibit NF-${\kappa}B$ activation. The purpose of this study is to investigate how triptolide inhibits NF-${\kappa}B$-dependent IL-8 gene transcription in lung epithelial cells and to pilot the potential for the clinical application of triptolide in inflammatory lung diseases. Methods : A549 cells were used and triptolide was provided from Pharmagenesis Company (Palo Alto, CA). In order to examine NF-${\kappa}B$-dependent IL-8 transcriptional activity, we established stable A549 IL-8-NF-${\kappa}B$-luc. cells and performed luciferase assays. IL-8 gene expression was measured by RT-PCR and ELISA. A Western blot was done for the study of $I{\kappa}B{\alpha}$ degradation and an electromobility shift assay was done to analyze NF-${\kappa}B$ DNA binding. p65 specific transactivation was analyzed by a cotransfection study using a Gal4-p65 fusion protein expression system. To investigate the involvement of transcriptional coactivators, we perfomed a transfection study with CBP and SRC-1 expression vectors. Results : We observed that triptolide significantly suppresses NF-${\kappa}B$-dependent IL-8 transcriptional activity induced by IL-$1{\beta}$ and PMA. RT-PCR showed that triptolide represses both IL-$1{\beta}$ and PMA-induced IL-8 mRNA expression and ELISA confirmed this triptolide-mediated IL-8 suppression at the protein level. However, triptolide did not affect $I{\kappa}B{\alpha}$ degradation and NF-$_{\kappa}B$ DNA binding. In a p65-specific transactivation study, triptolide significantly suppressed Gal4-p65T Al and Gal4-p65T A2 activity suggesting that triptolide inhibits NF-${\kappa}B$ activation by inhibiting p65 transactivation. However, this triptolide-mediated inhibition of p65 transactivation was not rescued by the overexpression of CBP or SRC-1, thereby excluding the role of transcriptional coactivators. Conclusions : Triptolide is a new compound that inhibits NF-${\kappa}B$-dependent IL-8 transcriptional activation by inhibiting p65 transactivation, but not by an $I{\kappa}B{\alpha}$-dependent mechanism. This suggests that triptolide may have a therapeutic potential for inflammatory lung diseases.

  • PDF