• Title/Summary/Keyword: Tripod joint

Search Result 21, Processing Time 0.02 seconds

MEASUREMENT AND CHARACTERIZATION OF FRICTION IN AUTOMOTIVE DRIVESHAFT JOINTS

  • Lee, C.H.
    • International Journal of Automotive Technology
    • /
    • v.8 no.6
    • /
    • pp.723-730
    • /
    • 2007
  • The typical design of automotive driveshafts generally utilizes Constant Velocity(CV) joints as a solution to NVH. CV joints are an integral part of vehicles and significantly affect steering, suspension, and vehicle vibration comfort levels. Thus, CV joints have been favored over universal joints due to the constant velocity torque transfer and plunging capability. Although CV joints are common in vehicle applications, current research works on modeling CV joint friction and assumes constant empirical friction coefficient values. However, such models are long known to be inaccurate, especially under dynamic conditions, which is the case for CV joints. In this paper, an instrumented advanced CV joint friction apparatus was developed to measure the internal friction behavior of CV joints using actual tripod-type joint assemblies. The setup is capable of measuring key performance of friction under different realistic operating conditions of oscillatory speeds, torque and joint installation angles. The apparatus incorporates a custom-installed triaxial force sensor inside of the joint to measure the internal CV joint forces(including friction). Using the designed test setup, the intrinsic interfacial parameters of CV joints were investigated in order to understand their contact and friction mechanisms. The results provide a better understanding of CV joint friction characteristics in developing improved automotive driveshafts.

Strength Design of Driveshafts for Passenger Cars (승용차용 구동축의 강도설계)

  • Jeong, Chang-Hyun;Jung, Do-Hyun;Bae, Won-Rak;Kim, Jin-Yong;Im, Jong-Soon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.114-123
    • /
    • 2007
  • We are going to propose equations for stable static and endurance strength design of driveshafts. It is very important to decide the contact normal stress of internal components of CV joints. We can estimate the strength, torque capacity, endurance life of CV joints from contact normal stress by presented equation in this paper. Besides it can be shown the equation for shaft design.

Development of Flexible and Lightweight Robotic Hand with Tensegrity-Based Joint Structure for Functional Prosthesis (기능형 의수를 위한 텐스그리티 관절 구조 기반의 유연하고 가벼운 로봇 핸드 개발)

  • Geon Lee;Youngjin Choi
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.1
    • /
    • pp.1-7
    • /
    • 2024
  • This paper presents an under-actuated robotic hand inspired by the ligamentous structure of the human hand for a prosthetic application. The joint mechanisms are based on the concept of a tensegrity structure formed by elastic strings. These rigid bodies and elastic strings in the mechanism emulate the phalanx bones and primary ligaments found in human finger joints. As a result, the proposed hand inherently possesses compliant characteristics, ensuring robust adaptability during grasping and when interacting with physical environments. For the practical implementation of the tensegrity-based joint mechanism, we detail the installation of the strings and the routing of the driving tendon, which are related to extension and flexion, respectively. Additionally, we have designed the palm structure of the proposed hand to facilitate opposition and tripod grips between the fingers and thumb, taking into account the transverse arch of the human palm. In conclusion, we tested a prototype of the proposed hand to evaluate its motion and grasping capabilities.

Development of C. V. joint for FF car by precision cold forging (전륜구동차용 등속 죠인트 부품의 정밀 냉간 단조 기술 연구)

  • 이정환;정형식;유재운
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.13-24
    • /
    • 1992
  • 1) 1/2 Scale Model 실험과 실제품 성형실험을 통하여 정밀 냉간단조에 의한 Tripod Slide Housing의 제조공정 설계기술을 확립하고, 4단계 성형공정으로 시제품 제작에 성공하였다. 2) Triod Slide Housing을 성형할 수 있는 4단계(전방압출, Heading, 후방압출, Ironing)의 금형을 설계 및 제작하여 시제품 생산에 적용하고, 관련 필요기술을 축적하였다. 3)XC 48 등 중,고탄소강의 소둔 실험을 통하여 소둔 조건에 따른 구상화율 및 경도의 변화에 대한 연구를 수행함으로써, 고탄소강의 냉간단조시에 필요한 최적 소둔 조건에 응용할 수 있는 자료를 축적하였다.

  • PDF

Development and Verification of Measuring Tester for Generated Axial Force at Constant Velocity Joints (등속조인트에서 발생하는 축력 측정장치 개발 및 검증)

  • Lee, Kwang-Hee;Lee, Deuk-Won;Lee, Chul-Hee;Yun, Hyuk-Chae;Cho, Won-Oh
    • Tribology and Lubricants
    • /
    • v.28 no.6
    • /
    • pp.328-332
    • /
    • 2012
  • Generated Axial Force (GAF) due to internal friction at Constant Velocity (CV) joints is one of the causes generating vibration problems such as shudder in vehicle. In this study, the GAF measuring tester is developed to precisely measure GAF caused by internal friction in CV joints. As the developed tester can control temperature at joint, driving torque, angle of rotation and joint angles, actual driving conditions such as sudden acceleration can be applied to the machine. GAFs are measured and compared by using different types of grease in tripod housing. Also GAFs are measured for both new and used CV joints to be compared and analyzed. The test result shows the repeatability and consistency of the tester in terms of the different test conditions. By using the developed CV joint tester, friction performance of the joint can be evaluated by proposing the best CV joints as well as greases generating the lowest GAF.

Algebraic Force Distribution in Hexapod Walking Robots with a Failed Leg (고장이 존재하는 육족 보행 로봇을 위한 대수적 힘 분배)

  • Yang, Jung-Min
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.4
    • /
    • pp.457-463
    • /
    • 2009
  • In this paper, a novel foot force distribution algorithm for hexapod walking robots is presented. The considered hexapod robot has fault-tolerant tripod gaits with a failed leg in locked-joint failure. The principle of the proposed algorithm is to minimize the slippage of the leg that determines the stability margin of the fault-tolerant gaits. The fault-tolerant tripod gait has a drawback that it has less stability margin than normal gaits. Considering this drawback, we use the feature that there are always three supporting legs, and by incorporating the theory of Zero-Interaction Force, we calculate the foot forces analytically without resort to any optimization technique. In a case study, the proposed algorithm is compared with a conventional foot force distribution method and its applicability is demonstrated.

A Study on the Characteristics of Vibration Due to the Forces of Drive Shaft (승용차량 구동축의 작용력에 따른 진동특성 연구)

  • Sa, Jongsung;Kang, Taewon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.4
    • /
    • pp.708-716
    • /
    • 2013
  • This study aims to understand the applied forces and related vibrational characteristics of a tripod joint (TJ), which is mostly used in front-drive-type middle-sized sedans in South Korea. The plunging force (PF) and generated axial force (GAF) are the most influential quantities related to the vibrational characteristics of a driveshaft. To obtain meaningful data, specially designed tests were performed using MTS test sets. The results of direct measurements reveal that higher PF and GAF values appear to worsen the vibrational characteristics of the vehicle. On the other hand, the measured apparent mass is useful for calculating the applied forces for a short driveshaft that has no dynamic vibration absorber. Among diversely controlled samples, it shows that the viscosity and tight fit are very sensitive to shudder vibrations of the vehicle. Therefore, these are good design factors for quality controls in the production line of constant-velocity joints.

Research on stress distributions around welds of three-planar tubular Y-joints under out-of-plane bending moment

  • Shiliu Bao;Wenhua Wang;Jikai Zhou;Xin Li
    • Steel and Composite Structures
    • /
    • v.49 no.2
    • /
    • pp.181-196
    • /
    • 2023
  • Marine structures including offshore wind turbines (OWTs) always work under cyclic loads, which arouses much attention on the fatigue design. The tripod substructure is one of the typical foundation forms for fixed OWTs. The three-planar tubular Y-joint (3Y joint) is one of the important components in fatigue design as it is most likely to have cracks. With the existence of the multiplanar interaction effect, calculating the hot spot stress (HSS) of 3Y joints is complicated. To assist with fatigue design, the distributions of stress concentration factor (SCF) and multiplanar interaction factor (MIF) along weld toe curves induced by the out-of-plane bending moment are explored in this study. An FE analysis method was first developed and verified against experimental results. This method was applied to build a numerical database including 1920 FE models covering common ranges of geometric parameters. A parametric study has been carried out to reveal the distribution patterns of SCF and MIF. After multidimensional nonlinear fittings, SCF and MIF distribution formulas have been proposed. Accuracy and reliability checking prove that the proposed formulas are suitable for calculating the HSS of 3Y joints.

Fault Tolerant FTL Gaits for Walking over Irregular Terrain (비평탄 지형 보행을 위한 내고장성 FTL 걸음새)

  • Yang Jung-Min
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.3 s.309
    • /
    • pp.16-24
    • /
    • 2006
  • In this paper, fault-tolerant gait planning of a hexapod robot for walking over irregular terrain is presented. The failure concerned in this paper is a locked joint failure for which a joint in a leg cannot move and is locked in place. Based on the previously proposed fault-tolerant tripod gait for walking over even terrain, fault-tolerant follow-the-leader(FTL) gaits are proposed for a hexapod robot with a failed leg to be able to walk over two-dimensional rough terrain, maintaining static stability and fault tolerance. The proposed FTL gait can have maximum stride length for a given foot position of a failed leg, and yields better ditch crossing ability than the previously developed gaits. The applicability of the proposed FTL gait is verified by using computer graphics simulations.

Analysis on the Vibration Characteristics of Reduction Gear Units for High-speed Trains (고속철도차량 감속구동장치 진동특성 분석)

  • Moon, Kyung Ho;Lee, Dong-Hyong;Kim, Jae Chul;Ji, Hae Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.7
    • /
    • pp.694-701
    • /
    • 2013
  • The gear-reduction units of Korean high-speed trains consist of a motor reduction unit, an axle gear box reduction unit, and a tripod joint shaft. A reduction gear unit is a gearbox used to reduce the rotational speed of the input shaft to a slower rotational speed on the output shaft. This reduction in output speed helps to increase torque. Defective reduction gear units in high-speed trains are caused by damage to the gear or by gear fatigue. To diagnose potential problems, it is important to know the vibration characteristics of the reduction gear units. In this study, we analyzed the vibration characteristics of reduction gears under various conditions. The test setup included a full-scale test rig to evaluate reduction gear under both normal and extreme operating conditions.