• Title/Summary/Keyword: Triple decomposition

Search Result 11, Processing Time 0.009 seconds

A Study on Characteristics of Secondary Vortices in the Near Wake of a Circular Cylinder by PIV Measurement (PIV 계측에 의한 실린더 근접후류에서 2차 와류의 특성 연구)

  • Sung, Jae-Yong;Yoo, Jung-Yul
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.404-409
    • /
    • 2000
  • Characteristics of secondary vortices is topologically investigated in the near-wake region of a circular cylinder where the Taylor hypothesis does not hold. The three-dimensional flow fields in the wake-transition regime were measured by a time-resolved PIV. For the analysis in a moving frame of reference, the convection velocity of the Karman vortices is evaluated from the trajectory of vortex center which is defined as the centroid of the vorticity field. Then, a saddle point is obtained by applying the critical point theory. Science the distributions of fluctuating Reynolds stresses defined by triple-decomposition are closely related with the existence of secondary vortices. the physical meaning of them is explained in conjunction with vortex center and saddle point trajectories. Finally, the temporal evolution of streamwise vortex is also discussed.

  • PDF

SOME DECOMPOSITION FORMULAS ASSOCIATED WITH THE SARAN FUNCTION FE

  • Kim, Yong-Sup;Hasanov, Anvar;Lee, Chang-Hyun
    • Honam Mathematical Journal
    • /
    • v.32 no.4
    • /
    • pp.581-592
    • /
    • 2010
  • With the help of some techniques based upon certain inverse pairs of symbolic operators initiated by Burchnall-Chaundy, the authors investigate decomposition formulas associated with Saran's function $F_E$ in three variables. Many operator identities involving these pairs of symbolic operators are first constructed for this purpose. By employing their decomposition formulas, we also present a new group of integral representations for the Saran function $F_E$.

Turbulence Properties in the Near-Wake of a Circular Cylinder Using Power Spectral Estimation and Singular Spectral Analysis (PSE와 SSA를 이용한 원형 실린더 근접 후류 지역의 난류 특성 연구)

  • Bang, Joo Young;Seo, Il Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.136-136
    • /
    • 2019
  • 원형 실린더를 주변 흐름에 관한 연구는 오랜 기간 유체역학 전 영역에서 모형실험이나 수치모형으로 광범위하게 연구되었다. 이 흐름은 하천의 교각이나, 바다의 시추선과 같은 수공구조물 주변에서 관측된다. 난류와 와류가 공존하는 복잡한 특성 때문에, 이 흐름은 수공학에서 유사이송, 세굴, 오염물 확산 등에 영향을 준다. 본 연구는 실험실 수로에 설치된 원형 실린더(D=9cm) 후방의 근접 와류 구간에서(x/D<5) 유속을 ADV로 측정한 후, 난류 특성을 Power Spectral Estimation(PSE)와 Singular Spectral Analysis(SSA) 방법으로 연구하였다. PSE는 샘플 스펙트럼의 한계를 보완하고자 자료를 분할하고, window 함수를 적용하여 ensemble 평균을 구하는 경험적 방법이다. PSE를 이용하여 스펙트럼을 계산한 결과, 주 흐름 및 횡방향 흐름은 Inertial subrange에서 Kolmogorov의 가정과 일치하는 추세를 보였다. 그러나 수심방향 흐름의 스펙트럼은 -5/3보다 빠르게 감소하는 추세를 보였다. Inertial subrange 스펙트럼에서 난류 에너지 소산율은 원형 실린더에서 멀어짐에 따라 감소하는 추세를 보였고, 주 흐름방향과 횡방향 흐름은 비슷한 크기를 보였다. 난류 에너지 소산율과 동점성계수를 이용하여 Kolmogorov 길이, 유속, 시간 스케일을 계산했다. 난류의 운동에너지를 계산하기 위해 Triple decomposition 방법 중 하나인 SSA를 적용하였다. SSA는 유속행렬을 이용하여 고윳값과 고유벡터를 계산하고, 유속에서 기여도가 큰 부분을 추출하는 방법이다. SSA를 통해 실린더 후방 흐름에서 와류 성분과 난류 성분을 나누었다. 횡방향 흐름은 강한 와류로 큰 기여도를 갖는 고유벡터가 나타났지만, 주 흐름과 수심방향 흐름은 상대적으로 낮은 기여도를 갖는 고유벡터가 나타났다. 와류를 제외한 흐름에서 난류 운동에너지는 실린더와 멀어짐에 따라 감소하고, 흐름 중앙에서(y/D=0) 가장 큰 값을 보였다.

  • PDF

Microstructure and Phase Transition of ZnO Varistor Ceramics (ZnO 바리스터 세라믹스의 미세구조와 상전이)

  • 김경남;한상목
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.2
    • /
    • pp.160-166
    • /
    • 1991
  • Microstructure and phase changes during the sintering of ZnO varistors were studied in ZnO-Bi2O3-CoO-Sb2O3 and ZnO-Bi2O3-CoO-Sb2O3-Cr2O3 systems using acanning electron microscopy (SEM) with an energy dispersive X-ray analysis (EDAX), X-ray diffraction (XRD) and differential thermal analysis (DTA). The spinel phase and the Bi2O3 phase were formed by the decomposition of the pyrochlore phase during heating. The spinel particles (2-4$\mu\textrm{m}$), which were formed both along ther grain boundaries and within the ZnO grain, were always found near the pyrochlore phase. Intergranular phases (Bi2O3 and pyrochlore) were precipitated from the liquid phase during cooling. The Bi2O3 phases were located at the triple (or multiple) point of the ZnO grains. Cr2O3 played a role in decreasing the formation temperature of the spinel phase and Bi2O3 phase during sintering, and inhibited the grain growth.

  • PDF

Determination of Semicarbazide in PVC Gaskets of Food Bottle Cap and Foods (식품병마개 PVC gasket과 식품에 함유된 semicarbazide의 분석)

  • Park, Sang-Wook;Lee, Kwang-Ho;Kwak, In-Shin;Jeon, Dae-Hoon;Lee, Si-Kyung
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.334-338
    • /
    • 2005
  • Method was developed to efficiently analyze semicarbazide (SEM) in foods. Although SEM is produced by thermal decomposition of blowing agent azodicarbonamide, it is too small to be activated by ultraviolet light or fluorescence. When 2-nitrobenzaldehyde semicarbazone, derivatization of SEM, was analyzed by HPLC with triple column system, coefficient correlation over 0.9997 and detection limit of 0.48 ng/g were observed. SEM level in commercial bottle cap gasket was 812.20-5771.30ng/g. Recoveries for SEM in food and PVC gasket were 83.45-97.33% and 92.12-98.71%, respectively. SEM level in plastic seals of press twist-off metal lids was ND-5771.330ng/g.

Influence of Thyroxine on the Hepatotoxicity of Carbon Tetrachloride ($CC1_4$의 간장독작용(肝臟毒作用)에 미치는 Thyroxine의 영향(影響))

  • Hong, Ki-Sung;Cheon, Yun-Sook
    • The Korean Journal of Pharmacology
    • /
    • v.16 no.2 s.27
    • /
    • pp.31-38
    • /
    • 1980
  • Calvert et al. formulated the hypothesis that carbon tetrachloride ($CCl_4$) acted on the central nervous system to produce and intensify sympathetic discharge which resulted in anoxic necrosis of the liver. Recknagel suggested that the essential feature of $CCl_4$ hepatotoxicity depended on the cleavage of it to $CCl_3$(free radical) and the peroxidative decomposition of cytoplasmic membrane structural lipids. And there are many reports which show the increase of adrenergic activity in hyperthyroidism. In this paper, the influence of thyroxine on the hepatotexicity of carbon tetrachloride was investigated in mice. The results obtained were summarized as follows; 1) Hepatic total lipid and lipid peroxide contents were slightly decreased by L-sodium thyroxine injection(4mg/kg/day for 4days or 6days), but hepatic glycogen content was significantly decreased. 2) Hepatic total lipid and lipid peroxide contents and serum lactic dehydrogenase activity were significantly increased by $CCl_4$ (4 ml/kg single dose or triple dose: 4ml/kg/day for 3days), but hepatic glycogen content was significantly decreased. 3) The increase of hepatic total lipid and lipid peroxide contents and serum lactic dehydrogenase activity induced by $CCl_4$ were significantly inhitited by the pretreatment of thyroxine. 4) The decrease of hepatic glycogen induced by $CCl_4$ was not affected by the pretreatment of thyroxine.

  • PDF

Interrelationship Between Topological Structures and Secondary Vortices in the Near Wake of aCircular Cylinder (실린더 근접후류에서 위상학적 구조와 2차 와류의 상호 관계)

  • Seong, Jae-Yong;Yu, Jeong-Yeol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.10
    • /
    • pp.1355-1364
    • /
    • 2001
  • Characteristics of secondary vortices is topologically investigated in the near-wake region of a circular cylinder, where the Taylor's hypothesis does nut hold. The three-dimensional flow fields in the wake-transition regime were measured by a time-resolved PIV for various planes of view. The convection velocities of the Karman and secondary vortices are evaluated from the trajectory of the vortex center. Then, saddle points are determined by applying the critical point theory. It is shown that the inclination angle of the secondary vortices agrees well with the previous experimental data. The flow fields in a moving frame of reference have several critical points and the mushroom-like structure appears in the streamline patterns of the secondary vortices. Since the distributions of fluctuating Reynolds stresses defined by triple decomposition are closely related with the existence of secondary vortices, the physical meaning of them is explained in conjunction with the vortex center and saddle point trajectories.

27Al Solid-state NMR Structural Studies of Hydrotalcite Compounds Calcined at Different Temperatures

  • Park, Tae-Joon;Choi, Sung-Sub;Kim, Yong-Ae
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.1
    • /
    • pp.149-152
    • /
    • 2009
  • Hydrotalcites are anionic clays that are quite prevalent in nature and their importance is growing more and more because of their very wide range of potential applications and uses. Understanding the structural and compositional changes that occur on the molecular scale during the thermal decomposition of hydrotalcite compounds is essential for the basic prediction and comprehensive understanding of the behavior and technical application of these materials. In this study, several hydrotalcite compounds calcined at different temperatures for applications in a chlorine resistant textile were prepared and 27-Aluminm solid-state nuclear magnetic resonance (NMR) spectroscopy was used as a tool to study their local structure and behavior. The changes in the Al coordination of the hydrotalcite compounds were investigated with one dimensional (1D) solid-state magic angle spinning (MAS) NMR spectroscopy. The two broad resonances arising from the structurally different Al coordinations of these compounds were clearly resolved by two dimensional (2D) triple quantum magic angle spinning (3QMAS) NMR spectroscopy.

Fuel Supply of Direct Carbon Fuel Cells via Thermal Decomposition of Hydrocarbons Inside a Porous Ni Anode (다공성 니켈 연료 전극 내부에서 탄화수소의 열분해를 통한 직접 탄소 연료 전지의 연료공급)

  • Yi, Hakgyu;Li, Chengguo;Jalalabadi, Tahereh;Lee, Donggeun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.6
    • /
    • pp.527-534
    • /
    • 2015
  • This study offers a novel method for improving the physical contact between the anode and fuel in a direct carbon fuel cell (DCFC): a direct generation of carbon in a porous Ni anode through the thermal decomposition of gaseous hydrocarbons. Three kinds of alkane hydrocarbons with different carbon numbers (CH4, C2H6, and C3H8) are tested. From electron microscope observations of the carbon particles generated from each hydrocarbon, we confirm that more carbon spheres (CS), carbon nanotubes (CNT), and carbon nanofibers (CNF) were identified with increasing carbon number. Raman scattering results revealed that the carbon samples became less crystalline and more flexible with increasing carbon number. DCFC performance was measured at $700^{\circ}C$ with the anode fueled by the same mass of each carbon sample. One-dimensional carbon fuels of CNT and CNF more actively produced and had power densities 148 and 210 times higher than that of the CS, respectively. This difference is partly attributed to the findings that the less-crystalline CNT and CNF have much lower charge transfer resistances than the CS.

1D Kinetics Model of NH3-Fed Solid Oxide Fuel Cell (암모니아 공급 고체산화물 연료전지의 1D 반응 모델)

  • VAN-TIEN GIAP;THAI-QUYEN QUACH;KOOK YOUNG AHN;YONGGYUN BAE;SUNYOUP LEE;YOUNG SANG KIM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.6
    • /
    • pp.723-732
    • /
    • 2022
  • Cracking ammonia inside solid oxide fuel cell (SOFC) stack is a compact and simple way. To prevent sharp temperature fluctuation and increase cell efficiency, the decomposition reaction should be spread on whole cell area. This leading to a question that, how does anode thickness affect the conversion rate of ammonia and the cell voltage? Since the 0D model of SOFC is useful for system level simulation, how accurate is it to use equilibrium solver for internal ammonia cracking reaction? The 1D model of ammonia fed SOFC was used to simulate the diffusion and reaction of ammonia inside the anode electrode, then the partial pressure of hydrogen and steam at triple phase boundary was used for cell voltage calculation. The result shows that, the ammonia conversion rate increases and reaches saturated value as anode thickness increase, and the saturated thickness is bigger for lower operating temperature. The similar cell voltage between 1D and 0D models can be reached with NH3 conversion rate above 90%. The 0D model and 1D model of SOFC showed similar conversion rate at temperature over 750℃.