• 제목/요약/키워드: Triphenylphosphine

검색결과 69건 처리시간 0.026초

Novel Liquid Crystal Compounds and Its Mixtures for VA-TFT-LCD TV Application

  • Kim, Y.B.;Roh, S.D.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2002년도 International Meeting on Information Display
    • /
    • pp.471-474
    • /
    • 2002
  • Three-ring types liquid crystalline compounds having fluoro and isothiocyanate substituent were synthesized and their physical and electro-optical properties were measured to evaluate the applications to active matrix VA liquid crystal displays. The tetrakis(triphenylphosphine)palladium(0) catalyzed cross coupling of aryl boronic acids with aryl halides is used to prepare trans-4'-Alkoxy-2,3-difluoro-3'-isothiocyanato-4-(4-alkylcyclohexyl}-biphenyl series. The synthesized compounds showed the nematic liquid crystalline phase and the negative dielectric anisotropy. The prepared mixtures showed faster response time and lower threshold voltage than their host mixture.

  • PDF

The Oxidation of Hydrazobenzene Catalyzed by Cobalt Complexes in Nonaqueous Solvents

  • Kim, Stephen S.B.;Hommer, Roger B.;Cannon, Roderick D.
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권2호
    • /
    • pp.255-265
    • /
    • 2006
  • The oxidation of hydrazobenzene by molecular oxygen in the polar solvent methanol is catalysed by a Schiff's base complex Co(3MeOsalen) which is a synthetic oxygen carrier. The products are trans-azobenzene and water. The rate of the reaction has been studied spectrophotometrically and the rate law established. A mechanism involving a ternary complex of catalyst, hydrazobenzene and molecular oxygen has been proposed. The kinetic studies show that a ternary complex $CoL{\cdot}H_2AB{\cdot}O_2$ is involved in the rate determining step. The reactions are summarised in a catalytic cycle. The kinetic data suggest that a ternary complex involving Co(3MeOsalen), triphenyl-phosphine and molecular oxygen is catalytically acive species but at higher triphenylphosphine concentrations the catalyst becomes inactive. The destruction of the catalytic activity could be due to the catalyst becoming coordinated with triphenyl phosphine at both z axis sites of the complex e.g. Co (3MeOsalen)$(PPh_3)_2$.

전자수송층과 발광층 사이의 Ph3PO 혹은 BCP가 유기발광다이오드의 구동전압에 미치는 영향 (Effect of Ph3PO or BCP Between Electron Transport and Emission Layers on the Driving Voltage of Organic Light Emitting Diode)

  • 하미영;문대규
    • 한국전기전자재료학회논문지
    • /
    • 제24권8호
    • /
    • pp.678-681
    • /
    • 2011
  • We have investigated the effect of organic thin film on the driving voltage of OLED (organic light emitting diode) by inserting a 5 nm thick 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) or triphenylphosphineoxide ($Ph_3PO$) between tris-(8-hydroxyquinoline)aluminum ($Alq_3$) electron transport layer and 4,4'-bis(2,2'-diphyenylvinyl)-1,1'-biphenyl (DPVBi) emission layer. The device with 5 nm thick $Ph_3PO$ layer exhibited higher maximum current efficiency and lower driving voltage than the device with BCP layer, resulting from better electron injection from $Alq_3$ to DPVBi in the device with $Ph_3PO$ layer.

다층구조 Organo-lanthanide OLED의 전기적 특성 (Electrical Properties of Multi-layer Organo-lanthanide OLEDs)

  • 하미영;김소연;문대규
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 학술대회 및 기술세미나 논문집 디스플레이 광소자
    • /
    • pp.83-84
    • /
    • 2006
  • ITO/4, 4', 4"-tris (N -3 - methylphenyl - N - phenyl - amino) - triphenylamine, [m-MTDATA] / Terbium Iris - (1 - phenyl - 3 - methyl - 4 - (tertiarybutyryl) - pyrazol - 5 - one) triphenylphosphine oxide [$(tb-PMP)_3Tb-(Ph_3PO)$] / Mg:Ag devices were made to investigate its electrical and light emission properties. The thickness of m-MTOATA layer was varied from 0 to 80 nm. There was a threshold thickness for the sufficient hole injection. The insertion of 20 nm thick m-MTDATA layer between ITO and Tb-complex resulted in the right shift of current-voltage curve because of the insufficient hole injection. The low operating voltage can be obtained above the 40 nm of m-MTDATA layer. The insertion of m-MTDATA induced the increase of the background in the electroluminescence spectrum which was dependent on the current density of the devices.

  • PDF

Organo-lanthanide를 이용한 OLED의 전기 전도 특성 (The Electrical Conduction Characteristics of Organo-lanthanide based OLEDs)

  • 하미영;김소연;문대규
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.412-413
    • /
    • 2006
  • The electrical conduction mechanism of ITO / Terbium tris - (1 - phenyl - 3 - methyl - 4 - (tertiarybutyryl) - pyrazol - 5 - one) triphenylphosphine oxide [$(tb-PMP)_3Tb-(Ph_3PO)$]/Mg/Al devices has been investigated. The calculation of electric field in single layer organic layer between cathode and anode shows the uniform distribution for the electron injection barrier of over 1.4 eV. The measured current-voltage curve shows well matching with the calculated curve based on the tunneling injection of electron under the uniform distribution of electric field.

  • PDF

Reactivity and Reaction Mechanism for Reactions of 1, 1'-(Azodicarbonyl) dipiperidine with Triphenylphosphines

  • 성대동;최미정;하근문;엄태섭
    • Bulletin of the Korean Chemical Society
    • /
    • 제20권8호
    • /
    • pp.935-938
    • /
    • 1999
  • Reactivity and reaction mechanism for the reactions of 1,1'-(azodicarbonyl) dipiperidine with triphenylphosphines are investigated using kinetic method. The cation radical, Ph3P and the anion radical, -N-N - are produced during the course of the reaction. The cation radical is formed by the transfer of an electron from phosphorus to the nitrogen atom. The anion radical is formed by the addition of the one electron to the azo rad-ical. The rate constants are decreased by electron withdrawing groups while they are increased by electron donating groups present in triphenylphosphine. The electron density increases on nitrogen, while positive charge is developed on phosphorus in the transition state.

1,2,4-Triazole Fused Heterocycles; Part 3. Preparation of 1-(1-Phenylethenyl)-5-(N-substituted amino)-1,2,4-triazoles and 4H-1,2,4-Triazolo[1,5-c][1,3,5]oxadiazines

  • 이기정;이유석;송동혁
    • Bulletin of the Korean Chemical Society
    • /
    • 제16권11호
    • /
    • pp.1037-1042
    • /
    • 1995
  • The reaction of acetophenone 1-ureidoethylidenehydrazones 6 with a mixture of triphenylphosphine, carbon tetrachloride, and triethylamine in dichloromethane provides a general route to 1-(1-phenylethenyl)-5-(N-substituted amino)-1,2,4-triazoles 11 via the electrocyclization of the expected azino carbodiimide intermediates 9 to give the resonance stabilized azomethine imine 10a followed by a proton abstraction from the methyl group by amide anion. However, the same reaction of benzaldehyde 1-ureidoethylidenehydrazones 5 was unsuccessful. Under the same conditions, the reactions of benzaldehyde 1-N-acylureidoethylidenehydrazones 7 or acetophenone 1-N-acylureidoethylidenehydrazones 8 afforded 4H-1,2,4-triazolo[1,5-c][1,3,5]oxadiazines 16 or 17 via the zwitterionic species 15, or a [4+2] intramolecular cycloaddition from the carbodiimide intermediates 14, respectively.

A Kinetic Study of Biphenyl Type Epoxy-Xylok Resin System with Different Kinds of Catalysts

  • 한승;김환근;윤호규;문탁진
    • Bulletin of the Korean Chemical Society
    • /
    • 제18권11호
    • /
    • pp.1199-1203
    • /
    • 1997
  • The investigation of cure kinetics of biphenyl epoxy (4,4-diglycidyloxy-3,3,5,5-tetramethyl biphenyl)-xylok resin system with four different catalysts was performed by differential scanning calorimeter using an isothermal approach. All kinetic parameters of the curing reaction including the reaction order, activation energy and rate constant were calculated and reported. The results indicate that the curing reaction of the formulations using triphenylphosphine (TPP) and 1-benzyl-2-methylimidazole (1B2MI) as a catalyst proceeds through a first order kinetic mechanism, whereas that of the formulations using diazabicyloundecene (DBU) and tetraphenyl phosphonium tetraphenyl borate (TPP-TPB) proceeds by an autocatalytic kinetic mechanism. To describe the cure reaction in the latter stage, we have used the semiempirical relationship proposed by Chern and Poehlein. By combining an nth order kinetic model or an autocatalytic model with a diffusion factor, it is possible to predict the cure kinetics of each catalytic system over the whole range of conversion.

Synthesis, Reactions and Catalytic Activities of Water Soluble Rhodium and Iridium-Sulfonated Triphenylphosphine Complexes. 1. Polymerization of Terminal Alkynes

  • 주광석;김상열;진종식
    • Bulletin of the Korean Chemical Society
    • /
    • 제18권12호
    • /
    • pp.1296-1301
    • /
    • 1997
  • Polymerization of terminal alkynes (phenlacetylene and 4-ethynyltoluene) catalyzed by water soluble rhodium (Ⅰ) complex, RhCl(CO)(TPPTS)2 (TPPTS=m-P(C6H4SO3Na)3) (1) selectively produces cis-transoid polymers at room temperature in homogeneous solution of H2O and MeOH as well as in biphasic solutions of H2O and CHCl3. The rate of polymerization is higher in H2O/MeOH than in H2O/CHCl3. The iridium analog, IrCl(CO)(TPPTS)2 (2) shows catalytic activity for the polymerization of phenylacetylene only at elevated temperature to give trans-polymers. The polymerization rate increases significantly when the trimethylamine N-oxide (Me3NO) was added to the reaction mixtures. The electronic absorption spectra of the cis-transoid polymers show three absorption bands whereas the trasn-polymers show only one absorption band. It seems that the electronic absorption bands depend on the configuration of the polymers.

Preparation of Branched Polystyrene Using Atom Transfer Radical Polymerization Techniques and Protection-Deprotection Chemistry

  • Kwark, Young-Je
    • Macromolecular Research
    • /
    • 제16권3호
    • /
    • pp.238-246
    • /
    • 2008
  • A new strategy using protection-deprotection chemistry was used to prepare branched polymers using the ATRP method only. Among the several monomers with different protecting groups, vinyl benzyl t-butyloxy carbonate (VBt-BOC) and 4-methyl styrene (4-MeSt) could be polymerized successfully to form backbones using the ATRP method in a controlled fashion. The protected groups in the backbones were converted to alkyl bromides and used as initiating sites for branch formation. The benzyl t-butyloxy carbonate groups in the backbones containing VBt-BOC units were first deprotected to benzyl alcohol by trifluoroacetic acid, then converted to benzyl bromide by reacting them with triphenylphosphine/carbon tetrabromide. The benzyl bromide groups in the backbones containing 4-MeSt units could be generated by bromination of the methyl groups using N-bromosuccinimide/benzoyl peroxide. The structures of the prepared polymers were well-controlled, as evidenced by the controlled molecular weight as well as the narrow and unimodal molecular weight distribution.