• 제목/요약/키워드: Trimaran

검색결과 18건 처리시간 0.02초

Hydrodynamic Performance of a 2,500-ton Class Trimaran

  • Kang, kuk-Jin;Lee, Chun-Ju;Kim, Sun-Young;Park, Yun-Rak;Lee, Jin-Tae
    • Journal of Ship and Ocean Technology
    • /
    • 제6권2호
    • /
    • pp.23-36
    • /
    • 2002
  • This paper describes the powering, seakeeping and maneuvering performances for a 2,500-ton class trimaran. Influence of the side-hull forms and location of those in longitudinal and transverse direction to resistance performance was systematically investigated by a series of model tests and numerical calculations. It was found that the longitudinal location of side-hulls was the most influential design parameter to the resistance performance of the trimaran and the optimum location of side-hull depends on ship speeds. When the side-hull stem is located near the primary wave hollow generated by the main hull, the trimaran shows the best resistance performance. Powering performance of the trimaran is superior to those of similar mono-hull ships. Seakeeping model tests for the trimaran were executed and the results were compared with the theoretical results of a similar mono-hull ship. Generally speaking, seakeeping performance of the trimaran is superior to that of a mono-hull ship. In particular, pitching and rolling performance of the trimaran is excellent, which is due to the increased length and breadth. Maneuvering model tests using a HPMM equipment were executed to evaluate the maneuvering performance of the trimaran. Maneuvering simulation was performed using the maneuvering coefficients from the model tests. The results show that the control ability of heading angle and the direction keeping stability of the trimaran is excellent, even though the turning performance is rather worse compared to those of a similar mono-hull ship.

2,5000톤급 삼동선의 저항추진특성 (Powering Performance Characteristics of 2,5000 Ton Class Trimaran)

  • 강국진;이춘주;김도현
    • 대한조선학회논문집
    • /
    • 제38권3호
    • /
    • pp.14-22
    • /
    • 2001
  • 본 논문에서는 2,500톤급 삼동형 호위구축함의 선형설계와 저항추진특성에 대한 연구 결과를 보인다. 보조선체의 형상과 그 설치 위치가 삼동선의 저항성능에 미치는 영향을 파악하기 위하여 일련의 저항시험과 수치계산을 수행하였다. 그리고 삼동선의 추진효율을 조사하기 위하여 추진시험을 수행하였으며, 실선 크기에서 삼동선과 유사 단동선들의 저항추진성능을 비교하였다. 본 연구를 통하여 보조선체의 길이 방향 위치가 삼동선의 저항특성에 큰 영향을 미치며, 보조선체의 형상과 폭 방향의 위치는 그 영향이 작은 것을 알 수 있었다. 보조선체의 중심이 길이 방향으로 주선체의 선수나 선미 가까운 곳에 설치될 때 삼동선의 저항성능이 우수한 결과를 보였는데, 이는 주선체로부터 생성된 가장 큰 선수파의 파저에 보조선체의 선수가 놓이는 곳이다. 그리고, 삼동선의 저항추진성능은 유사 단동선에 비하여 중속 이상의 구간에서 우수한 결과를 보였다.

  • PDF

CFD computation of ship motions and added resistance for a high speed trimaran in regular head waves

  • Wu, Cheng-Sheng;Zhou, De-Cai;Gao, Lei;Miao, Quan-Ming
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제3권1호
    • /
    • pp.105-110
    • /
    • 2011
  • Some research work on CFD computation of ship motions and added resistance in waves for a high speed trimaran is carried out in this paper. The governing equations, Reynolds Averaged Navier-Stokes and continuity equations are discretized by finite volume method. Volume of fluid method is adopted to deal with the nonlinear free surface. The incident waves are generated from the inflow boundary by prescribing a velocity profile resembling flexible flap wavemaker motions, and the outgoing waves are dissipated inside an artificial damping zone located at the rear part of the wave tank. In this paper, the computed results of ship motion and added resistance for a high speed trimaran are presented. The results of seakeeping experiment for the high speed trimaran carried out in CSSRC towing tank are also presented in this paper. Rather good agreements are shown between the computational and experimental results. The work in this paper provides a numerical tool for the study of seakeeping performance of high speed trimarans.

10,000톤의 단동선, 쌍동선, 삼동선 저항 비교 (Comparison of Resistance for Three 10,000 Ton Ships: a Monohull, a Catamaran and a Trimaran)

  • 최영달;임효관;이귀주;선재욱
    • 대한조선학회 특별논문집
    • /
    • 대한조선학회 2006년도 특별논문집
    • /
    • pp.71-76
    • /
    • 2006
  • Preliminary conceptual design of hulls is developed and a theoretical evaluation study performed for the comparison of the hull concepts. Systematic variation of the side hull location is carried out to find an optimum position of side hulls for a trimaran by CFD computation. In order to compare computed results, the model test of trimaran was carried out. Shallow water effect is considered due to the route which has critical water depth of 20m for the design speed and investigated on the condition of different speeds and water depth by the numerical computations.

  • PDF

9.77 Ton급 삼동선의 선형 개발 및 실용화 연구 (A Study for Hull form Development of a 9.77 Ton Class Trimaran)

  • 오세면;이승희
    • 대한조선학회논문집
    • /
    • 제42권6호
    • /
    • pp.710-716
    • /
    • 2005
  • The objective of the present study is to design a hull form of a 9.77 ton class trimaran for use as a Pleasure boat around the bay of Gyounggy. The boat will be made of fiber reinforced plastics and equipped with a 650 hp diesel engine with a conventional water jet propulsion system and the maximum speed be 25 knots after fully loaded. In the present study, the optimal configuration such as relative location of outriggers of the 9.77 ton class trimaran is selected and the resistance characteristics are carefully studied through a series of model tests. The general arrangement of the boat are also considered in the final decision of the hull form.

고속 삼동선형 설계에 관한 연구 (A Study on the Hull Form Design of High-Speed Trimaran)

  • 이영길;최동섭;김규석
    • 대한조선학회논문집
    • /
    • 제41권3호
    • /
    • pp.60-71
    • /
    • 2004
  • Nowadays, We have had a growing interest in high-speed vessels' because it is very important to save time and cost in marine transportation. The development of hull form for high-speed vessels is high priority to secure the competitive power for the transportation of cargos. Therefore, the demand of the high-speed vessels is gradually increased, but the conventional hull forms are limited by rapidly increasing resistance upon the increase of ship speed in high-speed region. Therefore, new concepts for the hull form of high-speed vessels have been requested. One of the derived hull forms for that demand is the hull form of trimaran type. Trimaran has a very slender main hull as compared with conventional single hull so that is reduced in wave resistance. The slender main hull has the undesirable characteristics of stability, but two side hulls make up for the week points in the stability. That is, trimaran is able to have desirable performances for the resistance and stability. In this paper, for the design of 200TEU class container vessel with trimaran type, which will be cruised in Yellow-Sea region, firstly a preliminary hull is designed, and the model test is carried out with the variation of side hull position. From the experience of the preliminary hull form design, an improved hull form for the 200TEU container are designed, and the model tests are carried out. Also, a numerical computation technique is adopted for the simulation of flow phenomena around the designed hull forms. The final hull form is compared with existing ships for the resistance performance from the computation with computer and ship model tests.

Hull Form Optimization of a Small Trimar:an by Model Testing

  • Oh Se-Myun;Lee Seung-Hee;Lee Young-Gill
    • Journal of Ship and Ocean Technology
    • /
    • 제9권3호
    • /
    • pp.14-22
    • /
    • 2005
  • A 12 m long G/T 4.99 Class Trimaran is now under development at the Center for Transportation System of the Yellow Sea (CTYS) before deployed as a pleasure fishing boat along the west coast of Korean peninsula. The boats will be made of fiber reinforced plastics and equipped with a 360 hp diesel engine and a water jet propulsion system to propel the ship to reach maximum speed of 25knots after fully loaded. Model tests for hull form development of the Trimaran have been done at the towing tank of the Inha University. The influence of the spacing between main hull and outriggers and the longitudinal location of the outriggers have been carefully examined to find the optimal size and locations of the outriggers to improve both the resistance characteristics, and the results are reported in the present paper.

모듈 선체형 삼동 폰툰 보트의 구조설계 민감도 평가와 근사 최적화 해석 (Sensitivity Evaluation and Approximate Optimization Analysis for Structure Design of Module Hull Type Trimaran Pontoon Boat)

  • 최보엽;손창련;손준식;박민호;송창용
    • 한국산업융합학회 논문집
    • /
    • 제26권6_3호
    • /
    • pp.1279-1288
    • /
    • 2023
  • Recently, domestic leisure boats have been actively researching eco-friendly product development to enter the global market. Since the hulls of existing leisure boats are mainly made of fiber reinforced plastic (FRP) or aluminum, design techniques for securing structural safety by applying related materials have been mainly studied. In this study, an initial structural design safety assessment of a trimaran pontoon leisure boat with a modular hull structure and eco-friendly high-density polyethylene (HDPE) material was conducted, and sensitivity evaluation and optimization analysis for lightweight design were performed. The initial structural design safety assessment was carried out by creating a finite element analysis model and applying the loading conditions specified in the ship classification regulation to check whether the specified allowable stresses are satisfied. For the sensitivity evaluation, the influence of stress and weight of each hull structural member was evaluated using the orthogonal array design of experiments method, and an approximate model based on the response surface method was generated using the results of the design of experiments. The optimization analysis set the thickness of the hull structural members as the design variable and considered the optimal design formulation to minimize the weight while satisfying the allowable stress. The algorithm of the optimization analysis applied the Gradient-population Based Optimizer (GBO) to improve the accuracy of the optimal solution convergence while reducing the numerical cost. Through this study, the optimal design of a newly developed eco-friendly trimaran pontoon leisure boat with a weight reduction of 10% was presented.

트랜섬 선미를 가지는 선박의 선미선형 설계에 관한 기초적 연구 (A Preliminary Study about the Stern Hull Form Design of Ship with Transom Stern)

  • 이영길;김규석;강대선;정광열
    • 한국해양공학회지
    • /
    • 제20권3호
    • /
    • pp.88-95
    • /
    • 2006
  • The resistance characteristics of a trimaran are studied, varying the bottom profile and transom stern of the main hull. The bottom profile is varied in three cases (convex, flat, concave). Using the experimental and numerical methods, the resistance performance of each hull form is compared. The experiments are carried out in ship model basin, and the numerical simulations are performed by a finite-difference method, based on the Marker and Cell scheme. Euler and continuity equationsare used for the governing equations of the flaw field around a trimaran with transom stern. The agreement of both results is good. The optimal bottom profiles for transom stern are presented for law-speed and high-speed regions, respectively.

Numerical and experimental analysis of hydroelastic responses of a high-speed trimaran in oblique irregular waves

  • Chen, Zhanyang;Gui, Hongbin;Dong, Pingsha;Yu, Changli
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권1호
    • /
    • pp.409-421
    • /
    • 2019
  • Investigation of hydroelastic responses of high-speed vessels in irregular sea state is of major interest in naval applications. A three dimensional nonlinear time-domain hydroelastic method in oblique irregular waves is developed, in which the nonlinear hydrostatic restoring force caused by instantaneous wetted surface and slamming force are considered. In order to solve the two technical problems caused by irregular sea state, the time-domain retardation function and Proportional, Integral and Derivative (PID) autopilot model are applied respectively. Besides, segmented model tests of a high-speed trimaran in oblique waves are performed. An oblique wave testing system for trimarans is designed and assembled. The measured results of main hull and cross-decks are analyzed, and the differences in distribution of load responses between trimarans and monohull ships are discussed. Finally, from the comparisons, it is confirmed that the present concept for dealing with nonlinear hydroelastic responses of ships in oblique irregular waves is reliable and accurate.