• Title/Summary/Keyword: Trifluoromethyl

Search Result 110, Processing Time 0.025 seconds

Gastrointestinal and Hepatic First-pass Effects of Triflusal in Rats (흰쥐에서 트리플루살의 위장관 및 간 초회통과효과)

  • Cho, Hea-Young;Jeong, Tae-Jin;Lee, Yong-Bok
    • Journal of Pharmaceutical Investigation
    • /
    • v.31 no.4
    • /
    • pp.265-271
    • /
    • 2001
  • In order to elucidate the influence of intestinal and hepatic first-pass effect on the pharmacokinetics of triflusal, the biotransformation of triflusal in the gastrointestinal tract and liver was designed. Moreover, we tried to establish an HPLC method applicable for bioassay and available to pharmacokinetics, not only with the simultaneous determination of triflusal and its active metabolite, 2-hydroxy-4-trifluoromethyl benzoic acid (HTB), but also with improving sensitivity. After the administration of triflusal (10 mg/kg) and HTB (10 mg/kg) into femoral vein, portal vein (only triflusal) and oral route (only triflusal), pharmacokinetic parameters were investigated from the plasma concentration-time profiles of triflusal and HTB in rats. An HPLC method was developed for the simultaneous determination of triflusal and HTB in rat plasma, urine and bile. The HPLC analysis was carried out using a C18 column and acetonitrile-methanol-water (25:10:65, v/v/v) as the mobile phase and UV detection at 234 nm. Furosemide was used as the internal standard. The calibration curves were linear over the concentration range $0.05-5.0\;{\mu}g/ml$ for triflusal and $0.2-200.0\;{\mu}g/ml$ for HTB with correlation coefficients greater than 0.999 and with intra-day or inter-day coefficients of variation not exceeding 10.0%. This assay procedure was applied to the study of metabolite pharmacokinetics of triflusal and HTB in rats. It was supposed that triflusal was almost metabolized in vivo because urinary and biliary excreted amounts of triflusal could be ignored as it was lower than 1.2% of the administered dose. According to the gastrointestinal and hepatic biotransformation pathways of triflusal, it was found that triflusal was hydrolyzed by about 5% in intestine and metabolized by about 53% in liver, and that the bioavailability of triflusal after oral administration of triflusal was 0.44, and also that the fraction of total elimination rate of triflusal which formed HTB in liver $(F_{mi},\;%)$ was about 98%. These results showed that triflusal was almost metabolized in liver, and the total elimination of triflusal in the body was dependent to the formation rate of HTB from triflusal in liver.

  • PDF

Inhibition of acetylcholinesterase activity by impurities in technical grades and purified flupyrazofos (Flupyrazofos 원제 및 정제품의 불순물 조성과 Acetylcholinesterase에 대한 저해 비교)

  • You, Kyoung-Youl;Cho, Boo-Yeon;Park, Dong-Sik;Hur, Jang-Hyun
    • The Korean Journal of Pesticide Science
    • /
    • v.9 no.1
    • /
    • pp.97-101
    • /
    • 2005
  • Flupyrazofos (O,O-diethyl O-1-phenyl-3-trifluoromethylpyrazo-5-yl phosphorothioate) is an organophosphorus insecticide with a pyrazole moiety which is newly developed and commercialized by SUNGBO chemical company and Korean Research Institute of Chemical Technology for effectively control against diamond back moth. This study was conducted to determine the composition and quantity of impurities in technical 1 (94.5%), technical 2 (97.6%) and purified (99.2%) flupyrazofos using GLC/MSD. Bimolecular inhibition rate constant($k_i$) with acethylcholinesterase (in vitro) and $I_{50}$ with mouse brain acetylcholinesterase (in vivo) were measured for comparing inhibitory patterns of two technicals and purified flupyrazofos. Impurities of flupyrazofos were identified as O,O,O-triethylthio-phosphoric acid (TEA), 1-phenyl-3-trifluoromethyl-5-ethoxy pyrazole(PTMEP), O,O-diethyl O-1-phenyl-3-trifluoromethylpyrazo-5-yl phosphoric acid ester(flupyrazofos oxen), O,S-diethyl O-1-phenyl-3-trifluoromethylpyrazo-5-yl phosphorothionate (S-ethyl flupyrazofos). In in vitro, technical 1 showed the fastest inhibition on AChE activity among them. And technical 1 and 2 showed 40% higher in vivo inhibition against mouse brian AChE than purified flupyrazofos did. These results could be caused by the impurities such as flupyrazofos oxen and S-methyl flupyrazofos contained in technical grades of flupyrazofos.

Synthesis and Antiproliferative Activity of Pyridinylcarbonylpyrimidines Against Melanoma Cell Line

  • Ahn, Hye-Mi;Lee, Jun-A;Kim, Hwan;Oh, Chang-Hyun;Lee, So-Ha;Sim, Tae-Bo;Hah, Jung-Mi;Kim, Dong-Jin;Yoo, Kyung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.1209-1214
    • /
    • 2011
  • The synthesis of the series of pyrimidinylamines 1a-d and pyrimidinylureas 1e-u bearing a novel pyridinylcarbonylpyrimidine scaffold and their antiproliferative activities against A375 human melanoma cell line were described. Among them, three compounds 1e, 1h, and 1o showed superior antiproliferative activities to Sorafenib ($IC_{50}=5.5{\mu}M$) as a reference compound. In our series, urea compound 1o having 4-chloro-3-trifluoromethyl moiety on the benzene nucleus exhibited very good antiproliferative activity with $IC_{50}$ value of $1.4{\mu}M$.

Enhanced Carbon Dioxide Adsorption on Post-Synthetically Modified Metal-Organic Frameworks

  • Ko, Na-Keun;Kim, Ja-Heon
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.8
    • /
    • pp.2705-2710
    • /
    • 2011
  • Four MOFs functionalized with 1-Me, 1-Pr, 1-Ph, and 1-$PhCF_3$ were prepared through post-synthetic modifications of a metal-organic framework (MOF), UMCM-1-$NH_2$ (1) with acetic, butyric, benzoic, and 4-(trifluoromethyl)benzoic anhydrides, respectively. Methane adsorption measurements between 253 and 298 K at pressures up to 1 bar indicated that both 1-Ph and 1-$PhCF_3$ adsorbed more $CH_4$ than the parent MOF, 1. All the functionalized MOFs adsorbed more $CO_2$ than 1 under conditions similar to the $CH_4$ test. The introduction of functional groups promoted adsorption of both $CH_4$ and $CO_2$ despite significantly reducing Brunauer-Emmet-Teller (BET) surface area: 4170 (1), 3550 (1-Me), 2900 (1-Pr), 3680 (1-Ph), and 3520 $m^2/g$ (1-$PhCF_3$). Electron-withdrawing aromatic groups (1-Ph, 1-$PhCF_3$) more effectively enhanced $CO_2$ adsorption than electron-donating alkyl groups (1-Me, 1-Pr). In particular, 1-Ph adsorbed 23% more $CO_2$ at 298 K and 50% more at 253 K than 1.

Dielectric Characteristics in Smectic Phase

  • Song, Jun-Ho;Coi, Suck;Kim, Yong-Bae;Kumar, Satyendra;Souk, Jun-Hyung;Shin, Sung-Tae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.419-422
    • /
    • 2002
  • We have studied dielectric properties in the smectic phases of 4-(6-ethoxy-1-trifluoromethyl-hexyloxycarbonyl)-phenyl-4-Nonyloxybiphenyl-4-carboxylat ( TFMEOHPNBC ) having fluorine attached to one of its benzene rings. Homogeneous and homeotropic 1.5 and 5${\mu}m$ thick test cells were prepared to analyze molecular dynamic property. We measured capacitance as a function of temperature in the frequency range between 20 Hz and 100 kHz by using HP4284A LCR meter. We observed that the homogeneous cell has high dielectric constant causing dipole moment in smectic $C^{\ast}$ phase, but we can see the dipole moments are canceled out in antiferroelectric phase. It is found that there are two kind of the relaxation director fluctuation below 100 kHz. The first is ionic or space charge contribution below 10 Hz, and the second is Goldstone mode near 1-2 kHz. We will discuss molecular dynamics in smectic phase from extra information such as x-ray and electrooptic data.

  • PDF

Smectic Layer Reorientation Induced by AC Field

  • Song, Jun-Ho;Kim, Yong-Bae;Kumar, Satyendra;Souk, Jun-Hyung;Shin, Sung-Tae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.415-418
    • /
    • 2002
  • We have studied electro-optic properties and layer deformations in the smectic phases of 4-(6ethoxy-l-trifluoromethyl-hexyloxycarbonyl)-phenyl-4-Nonyloxybiphenyl-4-carboxylat ( TFMEOHPNBC ) having fluorine attached to one of its benzene rings by electro-optical and small angle x-ray scattering techniques. 3 and 5${\mu}m$ thick test cells were prepared using beryllium plates to minimize x-ray beam absorption. Layer structure and orientation was studied while changing the amplitude and frequency of the applied electric field as a function of cell temperature. We observed that the chevron layer tilt angle is reduced and layer spacing is increased as stabilizing in antiferroelectric phase. This result is extraordinary that there is dimerization in antiferroelectric phase. We also found that there is a threshold electric field that changes the chevron structure to bookshelf structure. This threshold electric field depends on the frequency and temperature as shown in Fig.1. We will discuss the dynamics of layer orientation as determined from the x-ray, electro-optic and dielectric spectroscopy.

  • PDF

Crystal Form of Celecoxib: Preparation, Characterization and Dissolution

  • Jin, Mi-Ryung;Sohn, Young-Taek
    • Journal of the Korean Chemical Society
    • /
    • v.62 no.5
    • /
    • pp.352-357
    • /
    • 2018
  • Celecoxib (4-[5-(4-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide) is a cyclooxygenase-2 inhibitor used in the treatment of arthritis, acute pain, and dysmenorrhoea. Celecoxib is a Biopharmaceutics Classification System (BCS) class II compound whose oral bioavailability is highly limited owing to its poor aqueous solubility. Several polymorphs of celecoxib have been identified as Form I, Form II, and Form III with melting points of about $162.8^{\circ}C$, $161.5^{\circ}C$, and $160.8^{\circ}C$, respectively. Form IV was generated from the precipitated suspension in the presence of HPMC (Hydroxypropyl methylcellulose) and Polysorbate 80. A rapid rate of dissolution is useful because the rate of dissolution of a drug typically increases its bioavailability. The aim of this study was to investigate the possibility of production of new crystal form of celecoxib that has higher solubility than Form III. New crystal form of celecoxib (Form A) has been isolated by recrystallization and characterized by differential scanning calorimetry (DSC), thermogravimetric (TG) analysis and powder X-ray diffractometry (PXRD). Form A was dissolved faster than Form III. At 30 minutes, the dissolution of Form A was 97.3%, whereas the dissolution of Form III was 82.2% (p < 0.1). After storage of three months at $20^{\circ}C$, in 24% RH (Relative Humidity), the crystal form was not transformed.

Effect of Substituted Trifluoromethyl Groups on Thermal and Mechanical Properties of Fluorine-containing Epoxy Resin

  • Heo, Gun-Young;Park, Soo-Jin
    • Macromolecular Research
    • /
    • v.17 no.11
    • /
    • pp.870-873
    • /
    • 2009
  • In this study, 2-diglycidylether of benzotrifluoride (2-DGEBTF) and 4-diglycidylether of benzotrifluoride (4-DGEBTF) epoxy resins, which contained fluorine groups in the main chain, were synthesized. The resins were characterized by FTIR, $^1H$ NMR, $^{13}C$ NMR and $^{19}F$ NMR spectroscopy. The 2-DGEBTF and 4-DGEBTF epoxy resins were cured with triethylene tetramine (TETA), and the effect of the fluorine group on the synthesized epoxy resin on the cure behavior, thermal, and mechanical properties was investigated. The 2-DGEBTF/TETA system was more reactive than the 4-DGEBTF/TETA system, whereas the thermal stability factor i.e., the decomposition activation energy ($E_d$), of 4-DGEBTF/TETA was higher than that of 2-DGEBTF/TETA. These results can be explained by the decrease in cross-linking density and decomposition of the short side chains, resulting in the $CF_3$ group at the para position. However, the $K_{IC}$ value of 4-DGEBTF/TETA was higher than that of 2-DGEBTF/TETA. This was attributed to the increase in flexibility in the epoxy backbone, resulting in a difference in steric hindrance and polarlizability.

Anticancer Activity of Indeno[1,2-b]-Pyridinol Derivative as a New DNA Minor Groove Binding Catalytic Inhibitor of Topoisomerase IIα

  • Jeon, Kyung-Hwa;Shrestha, Aarajana;Jang, Hae Jin;Kim, Jeong-Ahn;Sheen, Naeun;Seo, Minjung;Lee, Eung-Seok;Kwon, Youngjoo
    • Biomolecules & Therapeutics
    • /
    • v.29 no.5
    • /
    • pp.562-570
    • /
    • 2021
  • Topoisomerase IIα has been a representative anti-cancer target for decades thanks to its functional necessity in highly proliferative cancer cells. As type of topoisomerase IIα targeting drugs, topoisomerase II poisons are frequently in clinical usage. However, topoisomerase II poisons result in crucial consequences resulted from mechanistically induced DNA toxicity. For this reason, it is needed to develop catalytic inhibitors of topoisomerase IIα through the alternative mechanism of enzymatic regulation. As a catalytic inhibitor of topoisomerase IIα, AK-I-191 was previously reported for its enzyme inhibitory activity. In this study, we clarified the mechanism of AK-I-191 and conducted various types of spectroscopic and biological evaluations for deeper understanding of its mechanism of action. Conclusively, AK-I-191 represented potent topoisomerase IIα inhibitory activity through binding to minor groove of DNA double helix and showed synergistic effects with tamoxifen in antiproliferative activity.

Ligand Binding Properties of the N-Terminal Domain of Riboflavin Synthase from Escherichia coli

  • Lee, Chan-Yong;Illarionov, Boris;Woo, Young-Eun;Kemter, Kristina;Kim, Ryu-Ryun;Eberhardt, Sabine;Cushman, Mark;Eisenreich, Wolfgang;Fischer, Markus;Bacher, Adelbert
    • BMB Reports
    • /
    • v.40 no.2
    • /
    • pp.239-246
    • /
    • 2007
  • Riboflavin synthase from Escherichia coli is a homotrimer of 23.4 kDa subunits and catalyzes the formation of one molecule each of riboflavin and 5-amino-6-ribitylamino- 2,4(1H,3H)-pyrimidinedione by the transfer of a 4-carbon moiety between two molecules of the substrate, 6,7- dimethyl-8-ribityllumazine. Each subunit comprises two closely similar folding domains. Recombinant expression of the N-terminal domain is known to provide a $C_2$-symmetric homodimer. In this study, the binding properties of wild type as well as two mutated proteins of N-terminal domain of riboflavin synthase with various ligands were tested. The replacement of the amino acid residue A43, located in the second shell of riboflavin synthase active center, in the recombinant N-terminal domain dimer reduces the affinity for 6,7-dimethyl-8-ribityllumazine. The mutation of the amino acid residue C48 forming part of activity cavity of the enzyme causes significant $^{19}F$ NMR chemical shift modulation of trifluoromethyl derivatives of 6,7-dimethyl-8-ribityllumazine in complex with the protein, while substitution of A43 results in smaller chemical shift changes.