Effect of Substituted Trifluoromethyl Groups on Thermal and Mechanical Properties of Fluorine-containing Epoxy Resin

  • Published : 2009.11.25

Abstract

In this study, 2-diglycidylether of benzotrifluoride (2-DGEBTF) and 4-diglycidylether of benzotrifluoride (4-DGEBTF) epoxy resins, which contained fluorine groups in the main chain, were synthesized. The resins were characterized by FTIR, $^1H$ NMR, $^{13}C$ NMR and $^{19}F$ NMR spectroscopy. The 2-DGEBTF and 4-DGEBTF epoxy resins were cured with triethylene tetramine (TETA), and the effect of the fluorine group on the synthesized epoxy resin on the cure behavior, thermal, and mechanical properties was investigated. The 2-DGEBTF/TETA system was more reactive than the 4-DGEBTF/TETA system, whereas the thermal stability factor i.e., the decomposition activation energy ($E_d$), of 4-DGEBTF/TETA was higher than that of 2-DGEBTF/TETA. These results can be explained by the decrease in cross-linking density and decomposition of the short side chains, resulting in the $CF_3$ group at the para position. However, the $K_{IC}$ value of 4-DGEBTF/TETA was higher than that of 2-DGEBTF/TETA. This was attributed to the increase in flexibility in the epoxy backbone, resulting in a difference in steric hindrance and polarlizability.

Keywords

References

  1. C. A. May, in Epoxy Resins: Chemistry and Technology, 2nd Ed., Marcel Dekker, New York, 1988
  2. J. Seo, W. Jang, and H. Han, Macromol. Res., 15, 10 (2007) https://doi.org/10.1007/BF03218746
  3. Y. Choe, M. Kim, and W. Kim, Macromol. Res., 11, 267 (2003) https://doi.org/10.1007/BF03218363
  4. C. F. Canto, L. A. S. de A. Prado, E. Radovanovic, and I. V. P. Yoshida, Polym. Eng. Sci., 48, 141 (2008) https://doi.org/10.1002/pen.20931
  5. Y. Zheng, K. Chonung, X. Jin, P. Wei, and P. J. Jiang, Appl. Polym. Sci., 107, 3127 (2008) https://doi.org/10.1002/app.27502
  6. J. G. Liu, M. H. He, Z. X. Li, Z. G. Qian, F. S. Wang, and S. Y. Yang, J. Polym. Sci. Part A: Polym. Chem., 40, 1572 (2002) https://doi.org/10.1002/pola.10240
  7. D. W. Van Krevelen, Propeties of Polymers, 3rd Ed., Elsevier, Amsterdam, 1990
  8. G. Maier, Prog. Polym. Sci., 26, 3 (2001) https://doi.org/10.1016/S0079-6700(00)00043-5
  9. F. L. Jin, H. Y. Kim, and S. J. Park, J. Fluor. Chem., 128, 184 (2007) https://doi.org/10.1016/j.jfluchem.2006.12.001
  10. J. R. Lee, F. L. Jin, S. J. Park, and J. M. Park, Surf. Coat. Technol., 180-181, 650. (2004) https://doi.org/10.1016/j.surfcoat.2003.10.111
  11. Z. Q. Tao, S. Y. Yang, Z. Y. Ge, J. S. Chen, and L. Fan, Eur. Polym. J., 43, 550 (2007) https://doi.org/10.1016/j.eurpolymj.2006.10.030
  12. D. N. Waters and L. P. John, Anal. Chem., 60, 53 (1988) https://doi.org/10.1021/ac00152a014
  13. P. Bruice, Organic Chemistry, Pearsons Prentice, 2004
  14. J. Tarrio-Saavedra, J. L${\acute{o}}$pez-Beceiro, S. Naya, and R. Artiaga, Polym. Degrad. Stabil., In Press, Corrected Proof. (2008)
  15. A. W. Coat and J. W. Redferm, J. Polym. Lett., 34, 869 (1965)
  16. S. J. Park, G. Y. Heo, and D. H. Suh, J. Polym. Sci. Part A: Polym. Chem., 41, 2393 (2003) https://doi.org/10.1002/pola.10777
  17. J. R. Lee, F. L. Jin, S. J. Park, and J. M. Park, J. Appl. Polym. Sci., 98, 650 (2004)
  18. Z. Zhong, S. Zheng, J. Huang, X. Cheng, and Q. Guo, Polymer, 39, 1075 (1998) https://doi.org/10.1016/S0032-3861(97)00382-0
  19. S. J. Park, F. L. Jin, and J. R. Lee, Macromol. Rapid Commun., 25, 724 (2004) https://doi.org/10.1002/marc.200300191
  20. C. H. Lin, C. S. Jiang, and C. S. Wang, J. Polym. Sci. Part A: Polym. Chem., 40, 4084 (2002) https://doi.org/10.1002/pola.10488