• Title/Summary/Keyword: Triethoxysilane

Search Result 46, Processing Time 0.028 seconds

Characteristics of carbon dioxide separation using amine functionalized carbon (아민기 개질 탄소를 이용한 이산화탄소 분리 특성)

  • Cha, Wang Seog;Lim, Byeong Jun;Kim, Jun Su;Lee, Sung Youn;Park, Tae Jun;Jang, Hyun Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.17-24
    • /
    • 2021
  • The development of a new sorbent for carbon dioxide depends on several factors, such as fast adsorption/absorption velocity, hydrophobicity, and lower regeneration temperature than commercial sorbent. In this study, aminosilane grafted activated carbon was synthesized to capture CO2. Methyltrimethoxysilane (MTMS) and 3-aminopropyl-triethoxysilane (APTES) were used as the grafting precursor of the amine functional group. The APTES grafting activated carbon showed higher sorption property than MTMS used one. The characteristics of the separation mechanism of carbon dioxide were examined by measuring the adsorption capacity according to temperature and carbon dioxide partial pressure. The absorption capacity of carbon dioxide was similar to amine grafting activated carbon and activated carbon at 25℃, but amine-grafted activated carbon was higher at 75℃. The amine functional group-grafted activated carbon showed higher absorption capacity than activated carbon with a 1% carbon dioxide partial pressure. Aminosilane grafting of activated carbon was chemically absorbed but also showed the characteristics of physical adsorption. The reforming activated carbon with an amine functional group grafted solid absorption/adsorption sorbent would significantly impact the material engineering industry and carbon dioxide adsorption process. The functionalized sorbent is a high-performance composite material. The developed sorbent may have applications in other industrial processes of absorption/adsorption and separation.

Electrochemical Performance of Graphite/Silicon/Pitch Anode Composites Bonded with Graphite Surface PVP and Silica Amine Function Group (흑연 표면의 PVP와 실리카의 아민 작용기로 결합된 흑연/실리콘/피치 음극 복합소재의 전기화학적 성능)

  • Lee, Su Hyeon;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.57 no.1
    • /
    • pp.118-123
    • /
    • 2019
  • In this study, the electrochemical characteristics of Graphite/Silicon/Pitch anode composites were analyzed to improve the low theoretical capacity of graphite as a lithium ion battery. The Graphite/Silica composites were synthesized by bonding silica onto polyvinylpyrrolidone coated graphite. The surface of used silica was treated with (3-Aminopropyl)triethoxysilane(APTES). Graphite/Silicon/Pitch composites were prepared by carbonization of petroleum pitch, the fabrication processes including the magnesiothermic reduction of nano silica to obtain silicon and varying the mass ratio of silica. The Graphite/Silicon/Pitch composites were analysed by XRD, SEM and XRD. Also the electrochemical performances of Graphite/Silicon/Pitch composite as the anode of lithium ion battery were investigated by constant current charge/discharge, rate performance, cyclic voltammetry and electrochemical impedance tests in the electrolyte of $LiPF_6$ dissolved in organic solvents (EC:DMC:EMC=1:1:1 vol%). The Graphite/Silicon/Pitch anode composite (silica 28.5 in weight) has better capacity (537 mAh/g). The cycle performance has an excellent capacity retention to 30th cycle of 95% and the retention rate capability of 98% in 0.1 C/0.2 C.

In-situ Monitoring for hybridization between GPS and Alumina Nano Sols (알루미나 나노 졸과 GPS와의 하이브리드화 과정 분석)

  • 황영영;김재홍;석상일
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.243-243
    • /
    • 2003
  • 무기 나노 입자와 유기물간의 균일한 화학적 결합으로 제조된 나노 구조형 재료는 수많은 용도에 부응할 수 있는 기계적, 전기적 및 광학적 특성을 설계, 제조하는데 유용한 방법으로 사용되고 있다. 이중 화학적 습식 졸-겔 공정은 나노 구조형 유/무기 하이브리드 재료 제조에 매우 효과적인 방법으로 알려져 있으며 내부식성 금속 코팅막, 내 스크래치 코팅막 제조에 활용되고 있다. 그러나 무기 나노 졸 입자와 유기물과의 매개로 작용하는 커플링제와의 하이브리드 과정에 대한 정보는 극히 조금 알려져 있다. 본 연구에서는 알루미나 나노 졸과 GPS((3-glycidoxypropyl-triethoxysilane)와의 하이브리드 생성 과정을 이온 전도도 측정으로 관찰한 결과를 보고하고자 한다. 알루미나 나노 졸은 Al(NO$_3$)$_3$.9$H_2O$ 수용액에 NH$_4$OH를 가하여 침전물을 얻고 여과 및 수세하여 졸 입자의 함량이 약 5 wt%가 되게 이온교환수와 해교제인 초산을 소량 가하여 10$0^{\circ}C$에서 약 50시간 열처리하는 방법으로 제조하였다. 알루미나 졸 입자와 GPS와의 결합 과정을 reactor FT-IR로 시간에 파라 연속적으로 분석하여 그 반응 경로를 이온 전기전도와 비교하여 논의 될 것이다. 아래 그림 1은 알루미나 나노 졸에 GPS를 첨가한 후 시간에 따라 얻어진 이온 전기전도도를 나타낸 그림이다.

  • PDF

An Experimental Study for the Minimization of Soot Adsorption on the Optical Surface of an Engine Soot Detector (I) (엔진 수트 측정 센서 표면에서의 흡착 오염 저감을 위한 실험적 연구 (I))

  • Yoon Eui-Sung;Kim Hak-Yal;Kong Hosung;Han Hung-Gu
    • Tribology and Lubricants
    • /
    • v.20 no.6
    • /
    • pp.343-349
    • /
    • 2004
  • The adsorption of soot particles onto a sensor surface of the engine soot detector posses a critical problem in the measurement. In order to prevent the optical rod surface from soot contamination, various functional coatings and flow-induced cleaning were applied to the surface in this work. For surface coatings, various materials of self-assembled monolayers (SAM) such as OTS (octadecyltrichlorosilane), PFDTES (perfluorodecyl-triethoxysilane) and PFDTMS (perfluorodecyltrimethoxysilane) were coated on the optical rod surface ,which have different characteristics in both hydrophobicity and oleophobicity. These coatings were tested with soot content varying from $0\%\;to\;3wt\%$ and oil temperature from 20 to $70^{\circ}C$. Test results showed that surface coatings were not effective for preventing the adsorption of soot panicles on the surface of optical rod. It was thought that these coatings provided the surface with additional attractive surface forces. However, it was found that adsorption of soot particles onto a sensor surface was minimized by flow-induced cleaning. This effect was tested with varying the flow velocity.

One- and Two-Dimensional Arrangement of DNA-Templated Gold Nanoparticle Chains using Plasma Ashing Method

  • Kim, Hyung-Jin;Hong, Byung-You
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.291-291
    • /
    • 2010
  • Electron-beam lithography (EBL) process is a versatile tool for a fabrication of nanostructures, nano-gap electrodes or molecular arrays and its application to nano-device. However, it is not appropriate for the fabrication of sub-5 nm features and high-aspect-ratio nanostructures due to the limitation of EBL resolution. In this study, the precision assembly and alignment of DNA molecule was demonstrated using sub-5 nm nanostructures formed by a combination of conventional electron-beam lithography (EBL) and plasma ashing processes. The ma-N2401 (EBL-negative tone resist) nanostructures were patterned by EBL process at a dose of $200\;{\mu}C/cm2$ with 25 kV and then were ashed by a chemical dry etcher at microwave (${\mu}W$) power of 50 W. We confirmed that this method was useful for sub-5 nm patterning of high-aspect-ratio nanostructures. In addition, we also utilized the surface-patterning technique to create the molecular pattern comprised 3-(aminopropyl) triethoxysilane (APS) as adhesion layer and octadecyltrichlorosilane (OTS) as passivation layer. DNA-templated gold nanoparticle chain was attached only on the sub-5 nm APS region defined by the amine groups, but not on surface of the OTS region. We were able to obtain DNA molecules aligned selectively on a SiO2/Si substrate using atomic force microscopy (AFM).

  • PDF

Formation Rate of DNA Nanowires According to the APTES Concentration

  • Kim, Taek-Woon;Kim, Nam-Hoon;Roh, Yong-Han
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.143-143
    • /
    • 2008
  • Nanowires are promising options for building nanoscale electronic structures coming from high conductivity of nanowires. In particular, Deoxyribonucleic acid (DNA), which is structurally nanowire, can obtain highly ordered electronic components for nanocircuitry and/or nanodevices because of its very flexible length controllability, nanometer-size diameter, about 2 nm, and self-assembling properties. In this work, we used the method to form DNA-Nanowires (NWs) by using chemical treatment on Silicon (Si) surface, and Aminopropyl-triethoxysilane (APTES) was used as inducer of DNA sequence to modify the characteristics of Si surface. Moreover, we performed tilting technique to align DNA by the direction of flow of DNA solution. We investigated the assembly process between DNA molecules and APTES - coated Si surface according to the APTES concentration, from $1.2{\mu}\ell$ to $120{\mu}\ell$. Atomic Force Microscopy (AFM) images showed the combination rate of DNA molecules by the change of APTES concentration. As APTES concentration becomes thicker, aggregation of DNA molecules occurs, and this makes a kind of DNA networks. In this respect, we confirmed that there's a positive relationship between the concentration of APTES and the formation rate of DNA nanowires. Since there have been lots of research preceded to utilize DNA nanowires as template, so by using this positive relationship with proper alignment technique, realization of nano electronic devices with DNA nanowires might be feasible.

  • PDF

Rheological Behaviors of Concentrated Silica Particle Suspensionsprepared by Sol-Gel Method (솔젤법으로 제조된 고농도 실리카 입자 분산계의 유변학적 거동)

  • 양승만
    • The Korean Journal of Rheology
    • /
    • v.10 no.1
    • /
    • pp.24-30
    • /
    • 1998
  • 솔젤법을 이용하여 단분산의 실리카 입자를 제조하고 농도변화에 따른 실리카 분산 액의 유변학적 거동을 해석하였다. 단분산 실리카 입자의 제조는 솔젤법을 이용한 액상반으 으로 제조하였고 입자의 안정화를 위하여 입자표면에 실란커플링제를 코팅하여 유기용매에 서 안정성을 갖도록 하였다. 분산액의 농도에 따른 유변학적 거동을 조사하기 위하여 부피 분율( )이 0.05인 희박 분산계로부터 =0.55의 고농도 분산계를 제조하였다. 솔젤법을 통하 여 단분산 실리카 입자를 성공적으로 제조하였으며 실란커플링제인 ${\gamma}$-methacryloxypropyl triethoxysilane로 입자의 표면을 화학적 방법으로 처리하여 유기용매 상에서 알킬기의 작용 에 의한 hard-sphere'특성을 나타내도록 하였으며 동시에 분산안정성을 유지할수 있었다. 입자 분산계는 =0.25이하의 부피농도에서는 분산용매와 같은 뉴톤거동을 보여주었으며 이 이이상의 농도에서는 비뉴톤거동인 전단담화(shear thinning)현상과 high shear limiting viscosity를 나타내었다. 이결과는 Krieger-Dougherty 식을 따름이 확인되었으며 부피분율 =0.50정도까지도 이식이 잘적용됨을 확인하였다. 부피분율 =0.50 이상의 고농도 입자 분산계 는 급격한 점도의 증가와 함께 전단담화와 전단탁화(shear thickening)현상이 모두 관찰되었 다. 특히 전단탁화를 일으키는 특헝전단변형률(cr)이하의 전단변형률에서는 안정되고 빠른 점성반응(viscous response)을 보여주었으나 특성 전단변형률 부근과 이상의 전단변형률 영 역에서는 매우 불안한 거동이 보여짐을 확인하였다. 그러나 이러한 점도 거동은 가역적이며 전단변형률을 증가시킬때와 감소시킬 때의 유변학적 거동이 거의 일치하였다.

  • PDF

Thermal Characteristics of Silicone Composites for the Application to Heat-Controllable Components (발열제어부품소재 적용을 위한 실리콘 복합조성물의 열전도 특성)

  • Kwak, Ho-Du;Oh, Weontae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.2
    • /
    • pp.116-121
    • /
    • 2019
  • Hexagonal boron nitride particles (s-hBN) modified with 3-aminopropyl triethoxysilane (APTES) were used for the preparation of silicone composite materials. The microstructure of the composite materials was observed, and the thermal conduction and mechanical characteristics of the composite sheets were studied based on the compositions and microstructures. When a small amount of s-hBN particles was used, the thermal conductivity of the composite improved as a whole, and the tensile strength of the sheet also increased. The thermal conductivity and tensile strength of the composite in which a small amount of carbon fiber was added along with s-hBN were further improved. However, the use of carbon nanotubes with structural characteristics similar to those of carbon fiber resulted in lower thermal conductivity and tensile strength. Elastic silicone composites exhibiting 2.5 W/mK of thermal conductivity and a low hardness are expected to be used as thermally conductive interfacial sheet materials.

Nanocomposites from Epoxy Resin and Layered Minerals (에폭시 수지와 층상광물로부터 나노복합재료의 합성)

  • 강재현;유성구;서길수
    • Polymer(Korea)
    • /
    • v.24 no.4
    • /
    • pp.571-577
    • /
    • 2000
  • A new type of filler for epoxy-clay nanocomposites has been prepared by the reaction of octadecyltrimethylammonium bromide and layered sodium montmorillonite (MMT) via an ion-exchange reaction. The gallery space was further modified by grafting the aminopropyl groups via a reaction between a octadecyltrimethylammonium-MMT and 3-aminopropyltriethoxysilane (APS). The interlayer modification of MMT was confirmed by XRD, IR, and solid-state $^{29}$ Si CP/MAS NMR. Furthermore, clay-polymer nanocomposites have been synthesized by the polymerization of diglycidyl ether of bisphenol A(DGEBA) and $C_{18}$ H$_{37}$ N($CH_3$)$_3$-APS-MMT. The resulting hybrid nanocomposites were characterized by XRD, transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The results proved that the organomontmorillonite could be exfoliated and uniformly dispersed in the epoxy matrix.

  • PDF

Effect of Solvents on the Photochromic Properties of Spiropyran in Hard Coating Films Prepared by Sol-Gel Method (Spiropyran의 분산용매가 Sol-Gel 하드 코팅 막의 광 변색 특성에 미치는 영향)

  • Kim, Dae Hyun;Shin, Yong Tak;Lee, Ju Yeon;Hong, Wongil;Lee, Bum Suk;Song, Ki Chang
    • Korean Chemical Engineering Research
    • /
    • v.47 no.4
    • /
    • pp.430-435
    • /
    • 2009
  • Spiropyran-doped organic-inorganic hybrid coatings were prepared starting from glycidoxypropyl triethoxysilane and vinyltriethoxysilane by a sol-gel method. They were applied as a thin layer to polycarbonate sheets and their photochromic properties were investigated. The effect of polarity of solvents dissolving the spiropyran was investigated on the photochromic properties. The decoloration rate of the spiropyran decreased with increasing the polarity of solvents dissolving the spiropyran because the open form of the spiropyran was easily stabilized in the polar gel matrix.