• Title/Summary/Keyword: TrichostatinA

Search Result 56, Processing Time 0.028 seconds

Trichostatin A, a Histone Deacetylase Inhibitor, Potentiated Cytotoxic Effect of ionizing Radiation in Human Head and Neck Cancer Cell Lines (히스톤탈아세틸효소 억제제 Trichostatin A에 의한 인간 두경부암 셰포주의 방사선 감수성 증강)

  • Kim, Jin Ho;Shin, Jin Hee;Chie, Eui Kyu;Wu, Hong-Gyun;Kim, Jae Sung;Kim, Il Han;Ha, Sung Whan;Park, Charn Il;Kang, Wee-Saing
    • Radiation Oncology Journal
    • /
    • v.22 no.2
    • /
    • pp.138-141
    • /
    • 2004
  • Purpose : We have previously reported that human glioblastoma cells are sensitized to radiation-induced death after their exposure to trichostatin A (TSA), a histone deacetylase inhibitor (HDAC-1), prior to the irradiation. We aimed to measure the magnitude of the radiosensitizing effect of TSA in human head and neck cancer cell lines. Materials and Methods : Human head and neck cancer cell lines, HN-3 and HN-9, were exposed to 0, 50, 100, and 200 nM TSA for 18 hr prior to irradiation. Then, the TSA-treated cells were irradiated with 0, 2, 4, 6, and 8 Gy, and cell survival was measured by clonogenic assay. Results : Pre-irradiation exposure to TSA was found to radiosensitize HN-3 and HN-9 cell lines. In HN-9 cells, the fraction surviving after 2 Gy (SF2) was significantly reduced by treatment of TSA at concentration as low as 50 nM. However, a treatment with 200 nM TSA was required to significantly decrease SF2 in the HN-3 cell line. SER of pre-irradiation treatment with 200 nM TSA was 1.84 in HN-3 and 7.24 in HN-9, respectively. Conclusions : Our results clearly showed that human head and neck cancer cell lines can be sensitized to ionizing radiation by pre-irradiation inhibition of histone deacetylase (HDAC) using TSA, and that this potentiation might well be a general phenomenon.

Effects of Trichostatin A on In vitro Development of Porcine Embryos Derived from Somatic Cell Nuclear Transfer

  • Jeong, Yeon Ik;Park, Chi Hun;Kim, Huen Suk;Jeong, Yeon Woo;Lee, Jong Yun;Park, Sun Woo;Lee, Se Yeong;Hyun, Sang Hwan;Kim, Yeun Wook;Shin, Taeyoung;Hwang, Woo Suk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.12
    • /
    • pp.1680-1688
    • /
    • 2013
  • Many different approaches have been developed to improve the efficiency of animal cloning by somatic cell nuclear transfer (SCNT), one of which is to modify histone acetylation levels using histone deacetylase inhibitors (HDACi) such as trichostatin A (TSA). In the present study, we examined the effect of TSA on in vitro development of porcine embryos derived from SCNT. We found that TSA treatment (50 nM) for 24 h following oocyte activation improved blastocyst formation rates (to 22.0%) compared with 8.9% in the non-treatment group and total cell number of the blastocysts for determining embryo quality also increased significantly ($88.9{\rightarrow}114.4$). Changes in histone acetylation levels as a result of TSA treatment were examined using indirect immunofluorescence and confocal microscopy scanning. Results showed that the histone acetylation level in TSA-treated embryos was higher than that in controls at both acetylated histone H3 lysine 9 (AcH3K9) and acetylated histone H4 lysine 12 (AcH4K12). Next, we compared the expression patterns of seven genes (OCT4, ID1; the pluripotent genes, H19, NNAT, PEG1; the imprinting genes, cytokeratin 8 and 18; the trophoblast marker genes). The SCNT blastocysts both with and without TSA treatment showed lower levels of OCT4, ID1, cytokeratin 8 and 18 than those of the in vivo blastocysts. In the case of the imprinting genes H19 and NNAT, except PEG1, the SCNT blastocysts both with and without TSA treatment showed higher levels than those of the in vivo blastocysts. Although the gene expression patterns between cloned blastocysts and their in vivo counterparts were different regardless of TSA treatment, it appears that several genes in NT blastocysts after TSA treatment showed a slight tendency toward expression patterns of in vivo blastocysts. Our results suggest that TSA treatment may improve preimplantation porcine embryo development following SCNT.

Induction of Apoptosis by HDAC Inhibitor Trichostatin A through Activation of Caspases and NF-κB in Human Prostate Epithelial Cells. (인체 전립선 상피세포에서 HDAC 저해제 trichostatin A의 caspase 및 NF-κB의 활성화를 통한 apoptosis 유도)

  • Park, Cheol;Jin, Cheng-Yun;Choi, Byung-Tae;Lee, Won-Ho;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.18 no.3
    • /
    • pp.336-343
    • /
    • 2008
  • Histone deacetylases (HDACs) inhibitors have emerged as the accessory therapeutic agents for various human cancers, since they can block the activity of specific HDACs, restore the expression of some tumor suppressor genes and induce cell differentiation, cell cycle arrest and apoptosis in vitro and in vivo. In the present study, we investigated that the effect of trichostatin A (TSA), an HDAC inhibitor, on the cell growth and apoptosis, and its effect on the nuclear factor-kappaB $(NF-{\kappa}B)$ activity in 267B1 human prostate epithelial cells. Exposure of 267B1 cells to TSA resulted in growth inhibition and apoptosis induction in and dose-dependent manners as measured by fluorescence microscopy, agarose gel electrophoresis and flow cytometry analysis. TSA treatment inhibited the levels of IAP family members such as c-IAP-1 and c-IAP-2 and induced the proteolytic activation of caspase-3, -8 and -9, which were associated with concomitant degradation of poly (ADP-ribose)-polymerase, ${\beta}-catenin$ and laminin B proteins. The increase in apoptosis by TSA was connected with the translocation of $NF-{\kappa}B$ from cytosol to nucleus, increase of the DNA binding as well as promoter activity of $NF-{\kappa}B$, and degradation of cytosolic inhibitor of KappaB $(I{\kappa}B)-{\alpha}$ protein. We therefore concluded that TSA demonstrated anti-proliferative and apoptosis-inducing effects on 267B1 cells in vitro, and that the activation of caspases and $NF-{\kappa}B$ may play important roles in its mechanism of action. Although further studies are needed, these findings provided important insights into the possible molecular mechanisms of the anti-cancer activity of TSA.

Trichostatin A, a Histone Deacetylase Inhibitor Stimulate CYP3A4 Proximal Promoter Activity in Hepa-I Cells

  • Ahn Mee Ryung;Kim Dae-Kee;Sheen Yhun Yhong
    • Archives of Pharmacal Research
    • /
    • v.27 no.4
    • /
    • pp.415-421
    • /
    • 2004
  • Cytochrome P450 3A4 (CYP3A4) is the most abundant CYPs in human liver, comprising approximately $30\%$ of the total liver CYPs contents and is involved in the metabolism of more than $60\%$ of currently used therapeutic drugs. However, the molecular mechanisms underly-ing regulation of CYP3A4 gene expression have not been understood. Thus, this study has been carried out to gain the insight of the molecular mechanism of CYP3A4 gene expression, investigating if the histone deacetylation is involved in the regulation of CYP3A4 gene expression by proximal promoter. Also SXR was investigated to see if they were involved in the regulation of CYP3A4 proximal promoter activity. Hepa-1 cells were transfected with a plasmid containing ${\~}1kb$ of the human CYP3A4 proximal promoter region (863 to +64 bp) cloned in front of a reporter gene, luciferase, in the presence or absence of SXR. Transfected cells were treated with CYP3A4 inducers such as rifampicin, PCN and RU 486, in order to examine the regulation of CYP3A4 gene expression in the presence or absence of trichostatin A (TSA). In Hepa-1 cells, CYP3A4 inducers increased modestly the luciferase activity when TSA was co-treated, but this increment was not enhanced by SXR cotransfection. Taken together, these results indicated that the inhibition of histone deacetylation was required to SXR-mediated increase in CYP3A4 proximal promoter region when rifampicin, or PCN was treated. Further a trans-activation by SXR may demand other species-specific transcription factors.

Inhibition of Histone Deacetylase Activity Diminishes Pressure Overloaded Cardiac Hypertrophy in Mice

  • Hong, Yun-Kyung;Song, Jong-Wook;Lee, Sang-Kil;Lee, Young-Jeon;Rho, Gyu-Jin;Kim, Joo-Heon;Hong, Yong-Geun
    • Reproductive and Developmental Biology
    • /
    • v.35 no.2
    • /
    • pp.159-165
    • /
    • 2011
  • To explore the role of histone deactylase (HDAC) activation in an in vivo model of hypertrophy, we studied the effects of Trichostatin A (TSA). TSA subjected to thoracic aortic banding (TAB)-induced pressure stress in mice. In histological observations, TAB in treated mice showed a significant hypertrophic response, whereas the sham operation remained nearly normal structure with partially blunted hypertrophy. TSA treatment had no effect (measured as HW/BW) on sham-operated animals. TAB animals treated with vehicle manifested a robust ~50% hypertrophic response (p<0.05 vs sham). TAB mice treated with 2 mg/kg/day TSA manifested a blunted growth responses, which was significantly diminished (p<0.05) compared with vehicle-treated TAB mice. TAB mice treated with a lower dose of TSA (0.5 mg/kg/day) manifested a similar blunting of hypertrophic growth (~25% increase in heart mass). Furthermore, to determine activity duration of TSA in vitro, 1 nM TSA was added to H9c2 cells. Histone acetylation was initiated at 4 hr after treatment, and it was peak up to 18 hr, then followed by significantly reduced to 30 hr. We also analyzed the expression of p53 following TSA treatment, wherein p53 expression was elevated at 4 hr, and it was maintained to 24 hr after treatment. ERK was activated at 8 hr, and maintained till 30 hr after treatment suggesting an intracellular signaling interaction between TSA and p53 expression Taken together, it is suggested that HDAC activation is required for pressure-overload growth of the heart. Eventually, these data suggest that histone acetylation may be a novel target for therapeutic intervention in pressure-overloaded cardiac hypertrophy.

Transcriptional Activation and Repression of Cell Cycle Regulatory Molecules by Trichostatin A (Trichostatin A 처리에 의하 세포주기 조절인자들의 전사활성화 및 불활성화)

  • Baek Jong-Soo;Lee Hee-Kyung;Cho Young-Su;Kim Sung-Young;Park Kwan-Kyu;Chang Young-Chae
    • Journal of Life Science
    • /
    • v.15 no.6 s.73
    • /
    • pp.994-1004
    • /
    • 2005
  • The dihydrofolate reductase (dhfr) promoter contains cis-acting element for the transcription factors Spl and E2F. Transcription of dhfr gene shows maximal activity during the Gl/S phase of cell cycle. The member of the Spl transcriptional factor family can act as both negative and positive regulators of gene expression. There was a report that Spl-Rb and E2F4-pl30 complexes cooperate to establish stable repression of dhfr gene expression in CHOC400 cells. Here, we examined the role of HDAC in dhfr, cyclin E, and cyclin A gene regulation using the histone deacetylation inhibitor, trichostatin A (TSA) in U2OS and C33A cells, a Rb-positive human osteosarcoma cell line, and a Rb-negative cervical carcinoma cell line, respectively. When the dhfr promoter constructs were applied in U2OS cells, TSA markedly stimulated over 14-fold of dhfr promoter activity through dhfr-Spl sites by the deletion of an E2F element. In contrast, the deletion of dhfr-Spl binding sites completely abolished promoter stimulation by TSA. The dhfr promoter activity including dhfr-Spl sites increased only 2-fold in C33A cells. Promoter activity containing only dhfr-E2F site did not have much effect by the treatment of TSA in both U2OS and C33A cells. On the other hand, treatment with TSA induced significantly mRNA expression of dhfr and cyclin E, whereas levels of cyclin A decreased in U2OS cells, but had no effect in C33A cells. These results indicate that TSA have contradictory effect, activation of dhfr and cyclin E genes on Gl phase, and down-regulation of cyclin A on G2 phase through transcriptional regulation in U2OS cells.

Induction of Apoptosis by IGFBP3 Overexpression in Hepatocellular Carcinoma Cells

  • Han, Jian-Jun;Xue, De-Wen;Han, Qiu-Rong;Liang, Xiao-Hong;Xie, Li;Li, Sheng;Wu, Hui-Yong;Song, Bao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.23
    • /
    • pp.10085-10089
    • /
    • 2015
  • Background: The insulin-like growth factor (IGF) system comprises a group of proteins that play key roles in regulating cell growth, differentiation, and apoptosis in a variety of cellular systems. The aim of this study was to investigate the role of insulin-like growth factor binding protein 3 (IGFBP3) in hepatocellular carcinoma. Materials and Methods: Expression of IGF2, IGFBP3, and PTEN was analyzed by qRT-PCR. Lentivirus vectors were used to overexpress IGFBP3 in hepatocellular carcinoma cell (HCC) lines. The effect of IGFBP3 on proliferation was investigated by MTT and colony formation assays. Results: Expression of IGF2, IGFBP3, and PTEN in several HCC cell lines was lower than in normal cell lines. After 5-aza-2'-deoxycytidine/trichostatin A treatment, significant demethylation of the promoter region of IGFBP3 was observed in HCC cells. Overexpression of IGFBP3 induced apoptosis and reduced colony formation in HUH7 cells. Conclusions: Expression of IGF2, IGFBP3, and PTEN in several HCC cell lines was lower than in normal cell lines. After 5-aza-2'-deoxycytidine/trichostatin A treatment, significant demethylation of the promoter region of IGFBP3 was observed in HCC cells. Overexpression of IGFBP3 induced apoptosis and reduced colony formation in HUH7 cells.

Histone Deacetylase Inhibitors Induce the Differentiation of Eosinophilic Leukemia EoL-1 Cells into Eosinophils

  • Ishihara Kenji;Hong Jang-Ja;Kaneko Motoko;Takahashi Aki;Sugeno Hiroki;Kang Young-Sook;Ohuchi Kazuo
    • Biomolecules & Therapeutics
    • /
    • v.14 no.2
    • /
    • pp.67-74
    • /
    • 2006
  • EoL-1 cells differentiate into eosinophils in the presence of n-butyrate, but the mechanism has remained to be elucidated. Because n-butyrate can inhibit histone deacetylases, we hypothesized that the inhibition of histone deacetylases induces the differentiation of EoL-1 cells into eosinophils. In this study, using n-butyrate and two other histone deacetylase inhibitors, apicidin and trichostatin A, we have analyzed the relationship between the inhibition of histone deacetylases and the differentiation into eosinophils in EoL-1 cells. It was demonstrated that apicidin and n-butyrate induced a continuous acetylation of histones H4 and H3, inhibited the proliferation of EoL-1 cells, and induced the expression of markers for mature eosinophils such as integrin ${\beta}7$, CCR1, and CCR3 on EoL-1 cells, while trichostatin A evoked a transient acetylation of his tones and induced no differentiation into eosinophils. These findings suggest that the continuous inhibition of histone deacetylases in EoL-1 cells induces the differentiation into mature eosinophils.