• Title/Summary/Keyword: Trichoderma disease

Search Result 78, Processing Time 0.022 seconds

Integrated Control of Large Patch Disease caused by Rhizoctonia solani AG2-2 by Using Fertilizers, Fungicides and Antagonistic Microbes on Turfgrasses (잔디에 발생하는 라지패취병의 종합적 방제)

  • 심규열;김희규;배동원;이준택;이현주
    • Asian Journal of Turfgrass Science
    • /
    • v.11 no.3
    • /
    • pp.173-183
    • /
    • 1997
  • This study was conducted to develop an integrated disease management system against large patch disease. Attempts were made to estimate the effect of calcium hydroxide, silicate fertilizer and urea on the mycelial growth of Rhizoctonia sotani AG2-2 and the development of large patch in vitro and in vivo and to establish the most promising combination of fertilizer, fungicide and antagonistic microbes. 1.The mycelial growth of Rhizoctonia sotani AG2-2 were completely inhibited at 2,000, 1,000 and 3,000ppm concentration by calcium hydroxide, silicate fertilizer and urea, respectively. Inhibition effect of silicate fertilizer was the highest, but that of urea was the lowest compared with other treatments. 2.Treatment of calcium hydroxide at rate of l00g /$m^2$ was the most effective, and control effect appeared from 30 days after treatment in spring, which was better in autumn than in spring. Silicate fertilizer treated at rate of l00g /$m^2$, 200g /m$^2$, in spring and 50g /$m^2$ in autumn were very effective. Urea at rate of 30g /$m^2$ was more effective than 60g /m$^2$ and 120g /m$^2$. 3.The efficacies of mepronil and toclofos-methyl, applied twice in spring and once in autumn, were 83.8% in spring, which persisted to 70% in autumn compared with untreated plot. 4.The efficacies of Trichoderma harzianum were the highest by 55% in spring, but those of Bacillus amyloliquefaciens BL-3 and Peudomonas putida were the highest by 80% in autumn among other antagonists tested, when two organisms were applied twice in spring and once in autumn.

  • PDF

Biological Control of Fusarium Wilt Disease of Pigeonpea

  • Rajesh Singh;B.K. Singh;R.S. Upadhyay;Bharat Rai;Lee, Youn-Su
    • The Plant Pathology Journal
    • /
    • v.18 no.5
    • /
    • pp.279-283
    • /
    • 2002
  • Biological control of Fusarium udum causing wilt disease of pigeonpea was studied in vitro, as well as, in vivo. Aspergilluspavus, Anergillus niger, Bacilius licheniformis (strain-2042), Gliocladium virens, Peniciliium citrimum, and Trichoderma harzianum, which were found to be the most potent ones in inhibiting the radial colony growth of the test pathogen, were used as biological control by amending their inocula at diffeyent concentrations in pots and in pathogen-infested soil in the fields. Maximum reduction of the wilt disease was observed with G. vireos both in pots and in the fields. The population of E. udum was found to be markedly reduced when the antagonists were applied in the soil. The study establishes that G. virens can be exploited for the biological control of wilt disease at field level.

Control Effect of Environmental-friendly Organic Materials against Major Pear Diseases (친환경 유기농자재를 이용한 배 주요병해 방제효과)

  • Yoon, Deok-Hoon;Patk, Hae-Jun;Nam, Ki-Woong
    • The Korean Journal of Pesticide Science
    • /
    • v.14 no.4
    • /
    • pp.401-406
    • /
    • 2010
  • This study was conducted to investigate the control effects of the environmental-friendly materials against major diseases of pear and to elucidate factors related to spore disperse of pear scab and pear rust. Spore disperse was deeply related ambient temperature in the early stage of disease occurrence and the maximum spore disperse was affected greatly by the air humidity, Percent of infected leaves of pear scab in plot treated with Trichoderma harzianum-YC459 was 29.3% and 43.3% in plot treated with Sulfur-80%. Two formulations above-mentioned were less effective to control pear scab than the chemical pesticide, hexaconazole. Control effect in plots single- and mixed-treated with Trichoderma harzianum-YC459, Sulfur-80% and hexaconazole against pear scab were compared with that in plot treated with chemicals by conventional application schedule in pear orchard. The incidence of pear scab was lower in plot treated with the environmental-friendly materials than that of untreated plot. However there was no significant difference among the treatments at the 5% level. Application of Sulfur-80% reduced significantly the incidence of pear scab (7.8%) compared to that (10.3%) in plot treated by conventional application schedule in organically cultivated pear orchard. Alternative application of Trichoderma harzianum-YC459 and Sulfur-80% (4.3%) suppressed the incidence of pear rust than that (7.1%) in plot treated by conventional application schedule in organically cultivated pear orchard.

Forest Green Mold Disease Caused by Trichoderma pseudokoningii in Winter Mushroom, Flammulina velutipes (Trichoderma pseudokoningii에 의한 팽이버섯 푸른곰팡이병)

  • Choi, In-Young;Lee, Wang-Hyu;Choi, Joung-Sik
    • The Korean Journal of Mycology
    • /
    • v.26 no.4 s.87
    • /
    • pp.531-537
    • /
    • 1998
  • Forest green mold incidence rate, extent of damage according to the inoculation periods, and its cultural characteristics were observed in the automatic cultural system of the winter mushroom, Flammulina velutipes. The incidence rate of the forest green mold was 7.7% in early cultivation stage and slowly increased to 14.9% in harvest stage. When the forest green mold was inoculated at cultural period, the rate was recorded at 100%, but the extent of the damage increased up to 40% (+++). There was also 100% incidence rate at early pinheading time, whereas the yield of mushroom decreased to ++ $(10{\sim}39%)$. The rate of forest green mold was greatly decreased to 34.4% at 10 days after pinheading, and its damage extent was also below 10%. A pathogen to infect the winter mushroom was identified as Trichoderma pseudokoningii. It's optimum temperature for mycelial growth is $25^{\circ}C$, and it grew 2.6 times faster than that of F. velutipes. The mycelial color of T. pseudokoningii was pale yellow or olivaceous in shades on PDA medium. Phialospore was one celled, and ellipsodal or obovoid, smooth walled, and measured $1.3{\sim}3.0{\times}1.0{\sim}2.5\;{\mu}m$. It aggregated in small heads at the tips of the phialides. The phialides were $3.2{\sim}9.2{\times}2.0{\sim}5.5\;{\mu}m$ and were of bowling pin type, solitary and alternate or more irregularly disposed at the conidiophore apex, T. pseudokoningii depressed the F. velutipes growth at the crossing cultivation when they were simultaneously. FV 4-1 (F. velutipes) cultivar was less depressed by T. pseudokoningii, but had a lower cross growth rate than the other four cultivars.

  • PDF

Endophytic Trichoderma gamsii YIM PH30019: a promising biocontrol agent with hyperosmolar, mycoparasitism, and antagonistic activities of induced volatile organic compounds on root-rot pathogenic fungi of Panax notoginseng

  • Chen, Jin-Lian;Sun, Shi-Zhong;Miao, Cui-Ping;Wu, Kai;Chen, You-Wei;Xu, Li-Hua;Guan, Hui-Lin;Zhao, Li-Xing
    • Journal of Ginseng Research
    • /
    • v.40 no.4
    • /
    • pp.315-324
    • /
    • 2016
  • Background: Biocontrol agents are regarded as promising and environmental friendly approaches as agrochemicals for phytodiseases that cause serious environmental and health problems. Trichoderma species have been widely used in suppression of soil-borne pathogens. In this study, an endophytic fungus, Trichoderma gamsii YIM PH30019, from healthy Panax notoginseng root was investigated for its biocontrol potential. Methods: In vitro detached healthy roots, and pot and field experiments were used to investigate the pathogenicity and biocontrol efficacy of T. gamsii YIM PH30019 to the host plant. The antagonistic mechanisms against test phytopathogens were analyzed using dual culture, scanning electron microscopy, and volatile organic compounds (VOCs). Tolerance to chemical fertilizers was also tested in a series of concentrations. Results: The results indicated that T. gamsii YIM PH30019 was nonpathogenic to the host, presented appreciable biocontrol efficacy, and could tolerate chemical fertilizer concentrations of up to 20%. T. gamsii YIM PH30019 displayed antagonistic activities against the pathogenic fungi of P. notoginseng via production of VOCs. On the basis of gas chromatography-mass spectrometry, VOCs were identified as dimethyl disulfide, dibenzofuran, methanethiol, ketones, etc., which are effective ingredients for antagonistic activity. T. gamsii YIM PH30019 was able to improve the seedlings' emergence and protect P. notoginseng plants from soil-borne disease in the continuous cropping field tests. Conclusion: The results suggest that the endophytic fungus T. gamsii YIM PH30019 may have a good potential as a biological control agent against notoginseng phytodiseases and can provide a clue to further illuminate the interactions between Trichoderma and phytopathogens.

Effect of Rosemary Essential Oil and Trichoderma koningiopsis T-403 VOCs on Pathogenic Fungi Responsible for Ginseng Root Rot Disease

  • Hussein, Khalid Abdallah;Lee, Young-Don;Joo, Jin Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.7
    • /
    • pp.1018-1026
    • /
    • 2020
  • Rosemary essential oil was evaluated for antifungal potentiality against six major ginseng pathogens: Sclerotinia sclerotiorum, Sclerotinia nivalis, Cylindrocarpon destructans, Alternaria panax, Botrytis cinerea, and Fusarium oxysporum. The in vitro fungicidal effects of two commonly used fungicides, namely mancozeb and fenhexamid, and the volatile organic compounds (VOCs) of Trichoderma koningiopsis T-403 on the mycelial growth were investigated. The results showed that rosemary essential oil is active against all of the pathogenic strains of ginseng root rot, whereas rosemary oil displayed high ability to inhibit the Sclerotinia spp. growth. The highest sensitivity was S. nivalis, with complete inhibition of growth at 0.1% v/v of rosemary oil, followed by Alternaria panax, which exhibited 100% inhibition at 0.3% v/v of the oil. Minimum inhibitory concentrations (MICs) of rosemary oil ranged from 0.1 % to 0.5 % (v/v). Chemical analysis using GC-MS showed the presence of thirty-two constituents within rosemary oil from R. officinals L. Camphore type is the most frequent sesquiterpene in rosemary oil composition. Mancozeb and fenhexamid showed their highest inhibition effect (45% and 30%, respectively) against A. panax. T. koningiopsis T-403 showed its highest inhibition effect (84%) against C. destructans isolate. This study may expedite the application of antifungal natural substances from rosemary and Trichoderma in the prevention and control of phytopathogenic strains in ginseng root infections.

Development of Antagonistic Microorganism for Biological Control of Dollar Spot of Turfgrass (잔디 동전마름병의 생물학적 방제를 위한 길항 미생물의 선발과 효력 검정)

  • Shim, Taek-Su;Jung, Woo-Cheol;Do, Ki-Seok;Shim, Gyu-Yul;Lee, Jae-Ho;Choi, Kee-Hyun
    • Asian Journal of Turfgrass Science
    • /
    • v.20 no.2
    • /
    • pp.191-201
    • /
    • 2006
  • Dollar spot caused by Sclerotinia homeocarpa is one of major diseases in putting greens. Microorganisms antagonistic to S. homeocarpa, a pathogen of dollar spot, were primarily screened through in vitro tests, including dual culture method and triple layer agar diffusion method. In vivo tests were also conducted to select the best candidate for a biocontrol microorganism, using pot experiment. Bacillus subtilis EW42-1 and Trichoderma harziaum GBF-0208 were finally selected as biocontrol agents against dollar spot. Relative Performance Index(RPI) was used as a criterion of selecting potential biocontrol agents. B. subtilis EW42-1 and T. harzianum GBF-0208 showed resistance to several agrochemicals mainly used in a golf course. B. subtilis EW42-1 and T. harzianum GBF-0208 suppressed effectively the disease progress of dollar spot like synthetic fungicide tebuconazole in the nursery where dollar spot had seriously occurred. B. subtilis EW42-1 and T. harzianum GBF-0208 have a potential to be biocontrol agents for the control of dollar spot.

Antifungal activity of extracts from Chamaecyparis obtusa and Pseudotsuga menziesii against Trichoderma spp. (국내산 침엽수 추출물의 Trichoderma spp.에 대한 항균활성)

  • Jung, Ji-Young;Kim, Ji-Woon;Kim, Yeong-Suk;Park, Han-Min;Lee, Byung-Hyun;Choi, Myung-Suk;Yang, Jae-Kyung
    • Journal of agriculture & life science
    • /
    • v.45 no.4
    • /
    • pp.1-11
    • /
    • 2011
  • The aim of this study was development of natural antifungal compounds from softwood. We investigated antifungal activities of extracts from Pseudotsuga menziesii and Chamaecyparis obtusa against Tricholderma genus which is virus causing green mold disease and analyzed antifungal compounds by Gas chromatography -Mass Spetrometer. Extracts from P. menziesii had inhibition activities against Tricholderma genus on 1,000 ppm and had high antifungal activities against T. viride by 70.1%, T. harzianum by 67.3% and T. aggressivum by 64.7% on 4,000 ppm. And extracts from C. obtusa had antifungal activities against Tricholderma genus on 1,000 ppm and had high antifungal activities against T. viride by 63.2%, T. harzianum by 59.3% and T. aggressivum by 59.1% on 4,000 ppm. But mixing compounds which are made from P. menziesii and C. obtusa extracts by variety ratio had lower antifungal activities than original extracts. Main antifungal active components of P. menziesii extracts against Tricholderma genus were 2-Isopropoxy-ethylamine 46.5%, epifluorohydrin 8.6%, trans-2,3-Di-methyloxirane 7.6%, (IR)-(-)-Myrtenal 6.0%, 2-Methoxy-4-Vinylphenol 3.9% and benzaldehyde 2.8%. In case of C. obtusa extracts, they were ${\alpha}$-Terpinenyl acetate 14.9%, Sabinene 10.9%, dl-Limonene 9.6%, ${\alpha}$-Terpinolene 7.5% and ${\alpha}$-Pinene 7.1%. As mentioned above, these results revealed extracts from P. menziesii and C. obtusa of softwood could be used as potential agents to inhibit Trichoderma genus.

Isolation and Identification of Competitive Fungi on Medium for Black Wood Ear Mushroom in Korea and In Vitro Selection of Potential Biocontrol Agents (목이버섯 배지 오염 곰팡이균의 분리, 동정 및 생물학적 방제제 선발)

  • Seoyeon Kim;Miju Jo;Sunmin An;Jiyoon Park;Jiwon Park;Sungkook Hong;Jiwoo Kim;Juhoon Cha;Yujin Roh;Da Som Kim;Mi jin Jeon;Won-Jae Chi;Sook-Young Park
    • Research in Plant Disease
    • /
    • v.30 no.1
    • /
    • pp.66-77
    • /
    • 2024
  • Black wood ear mushroom (Auricularia auricula-judae) is one of the most economically important mushrooms in China, Japan, and Korea. The cultivation of wood ear mushrooms on artificial substrates is more efficient in terms of time and cost compared with their natural growth on trees. However, if the substrate cultivation is infected by fast-growing fungi, the relatively slow-growing ear mushroom will be outcompeted, leading to economic losses. In this study, we investigated the competitive fungal isolates from substrates infected with fast-growing fungi for the cultivation of ear mushrooms in Jangheung and Sunchon, Korea. We collected 54 isolates and identified them by sequencing their internal transcribed spacer region with morphological identification. Among the isolates, the dominant isolates were Trichoderma spp. (92.6%), Penicillium spp. (5.6%), and Talaromyces sp. (1.8%). To find an appropriate eco-friendly biocontrol agent, we used five Streptomyces spp. and Benomyl, as controls against Trichoderma spp. and Penicillium spp. Among the six Streptomyces spp., Streptomyces sp. JC203-3 effectively controlled the fungi Trichoderma spp. and Penicillium spp., which pose a significant problem for the substrates of black wood ear mushrooms. This result indicated that this Streptomyces sp. JC203-3 can be used as biocontrol agents to protect against Trichoderma and Penicillium spp.

Combined Application of Pseudomonas fluorescens and Trichoderma viride has an Improved Biocontrol Activity Against Stem Rot in Groundnut

  • Manjula, K.;Kishore, G.Krishna;Girish, A.G.;Singh, S.D.
    • The Plant Pathology Journal
    • /
    • v.20 no.1
    • /
    • pp.75-80
    • /
    • 2004
  • In an attempt to develop effective biocontrol system for management of stem rot disease in groundnut, 57 bacterial isolates and 13 isolates of Trichoderma spp. were evaluated for their antagonistic activity against Sclerotium rolfsii. The antagonists were selected based on their ability to inhibit the external growth of S. rolfsii from infected groundnut seeds. Four isolates of Pseudomonas fluorescens, GB 4, GB 8, GB 10 and GB 27, and T. viride pq 1 were identified as potent antagonists of S. rolfsii. T. viride pq 1 produced extracellular chitinase and parasitized the mycelium of S. rolfsii. Under controlled environment conditions, P. fluorescens GB 10, GB 27, T. viride pq 1 and the systemic fungicide Thiram(equation omitted) reduced the mortality of S. rolfsii inoculated to groundnut seedlings by 58.0%, 55.9%, 70.0% and 25.9%, respectively compared to control. In vitro growth of P. fluorescens GB 10 and GB 27 was compatible with T. viride pq 1 and Thiram(equation omitted). Integrated use of these two bacterial isolates with T. viride pq 1 or Thiram(equation omitted) improved their biocontrol efficacy. Combined application of either GB 10 or GB 27 with T. viride pq 1 was significantly effective than that with Thiram(equation omitted) in protecting groundnut seedlings from stem rot infection.